Let x , y , z be the real roots of the cubic equation
2 u 3 − 7 9 9 u 2 − 4 0 0 u − 1 = 0
and let ω = tan − 1 x + tan − 1 y + tan − 1 z . If tan ω = b a , where a and b are positive coprime integers, what is the value of a + b ?
This problem is posed by Russelle G .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution, similar to all other correct solutions. Several solutions contained a proof that the roots are real, which is not necessary, since it is explicitly specified in the problem.
I realize all the comments here are a couple years old ... but nevertheless I have to ask: Did anyone consider what you get if you plug u = i into the polynomial?
Log in to reply
After putting u = i in the Polynomial Function : P ( u ) = 2 u 3 − 7 9 9 u 2 − 4 0 0 u − 1 this is what you get:
P ( i ) = − 4 0 2 i + 7 9 8
What is new in that
this is like really good solution
We first establish the nature of the three roots. Let f ( u ) = 2 u 3 − 7 9 9 u 2 − 4 0 0 u − 1 . Then we find that f ( − 1 ) = − 4 0 1 < 0 , f ( − 0 . 1 ) = 3 1 . 0 0 8 > 0 , f ( 0 ) = − 1 < 0 . By the Intermediate Value Theorem, we know that there is a real root between − 1 and − 0 . 1 and another real root between − 0 . 1 and 0 . Also, we can apply Vieta's formula to find that x y z = 2 1 , x y + y z + z x = 2 − 4 0 0 = − 2 0 0 , x + y + z = 2 7 9 9 . Since the product of the three roots is a positive real number and we know that two of the roots are negative real numbers, the last root must be a positive real number. Without loss of generality, we let the roots be in the order x < y < z .
We now use the inverse trigonometric identity tan − 1 m + tan − 1 n = tan − 1 1 − m n m + n for m n < 1 . Since x , y are both negative with magnitudes less than 1 , then their product would be positive but less than 1 . So we may apply the identity on x , y and get ω = tan − 1 x + tan − 1 y + tan − 1 z = tan − 1 1 − x y x + y + tan − 1 z . Since x , y are both negative, their sum would be negative. So x + y < 0 and x y < 1 , and we can easily deduce that 1 − x y x + y is negative. But z is positive, so we clearly have 1 − x y x + y ⋅ z < 0 < 1 , and we apply thus apply the identity on 1 − x y x + y , z to get ω = tan − 1 1 − x y x + y + tan − 1 z = tan − 1 1 − 1 − x y x + y ⋅ z 1 − x y x + y + z . Manipulating this expression gives us ω = tan − 1 1 − ( x y + y z + z x ) ( x + y + z ) − x y z . We have already calculated earlier the values of x y z , x y + y z + z x , x + y + z , so we can substitute these into the expression for ω we get ω = tan − 1 6 7 1 3 3 . So we have tan ω = 6 7 1 3 3 , and the answer we want is 1 3 3 + 6 7 = 2 0 0 .
By compound angle formulae, t a n ( ω ) = t a n ( x + y + z ) = 1 − ( x y + y z + z x ) x + y + z − x y z .But by Vieta's formula, x + y + z = 3 9 9 . 5 , x y z = 0 . 5 , x y + y z + x z = 2 0 0 . Substituting yields t a n ( ω ) = 6 7 1 3 3 . Thus, a + b = 2 0 0 .
We must first prove that all the 3 roots real.
Let f ( u ) = 2 u 3 − 7 9 9 u 2 − 4 0 0 u − 1 = 0 .
f ( − 2 1 < 0 , f ( − 3 1 > 0 , f ( 0 ) < 0 , f ( 4 0 1 ) > 0 .
So there exist at least one root between ( − 2 1 , − 3 1 ) , ( − 3 1 , 0 ) , ( 0 , 4 0 1 ) . Hence, all roots are real.
Thus, arctan ( tan x ) = x , arctan ( tan y ) = y , arctan ( tan z ) = z are real and valid.
By Vieta's formula, x + y + z = 2 7 9 9 , x y + x z + y z = − 2 0 0 , x y z = 2 1
Because ω = arctan x + arctan y + arctan z
tan ω = tan ( arctan x + arctan y + arctan z )
By Compound angle formula
tan ω = tan ( ( arctan x + arctan y ) + arctan z )
tan ω = 1 − 1 − x y x + y ⋅ z 1 − x y x + y + z
tan ω = 1 − ( x y + x z + y z ) ( x + y + z ) − ( x y z )
Substitute the values gives
tan ω = 6 7 1 3 3 ⇒ a = 1 3 3 , b = 6 7 ⇒ a + b = 2 0 0
Good solution. However, I don't think you have to prove that the roots are real, since it is given in the problem that they are.
Note the identity $$\tan (a + b + c) = \frac{\tan a + \tan b + \tan c - \tan a \tan b \tan c}{1 - (\tan a \tan b + \tan b \tan c + \tan c \tan a)}$$ Take a = arctan x , b = arctan y and c = arctan z , then $$\tan \Big(\arctan x + \arctan y + \arctan z\Big) = \tan \omega = \frac{x + y + z - xyz}{1 - (xy + yz + zx)}$$ By Viete's formulae we have $$x + y + z = \frac{799}{2}$$ $$xy + yz + zx = \frac{-400}{2} = -200$$ $$xyz = \frac{1}{2}$$ Hence $$\tan \omega = \frac{\frac{799}{2} - \frac{1}{2}}{1 + 200} = \frac{133}{67}$$ So $$a + b = 133 + 67 = \boxed{200}$$
[Without loss of generality, the values of x , y , and z lie within R . By the properties of tangent and arctangent, therefore, t a n ( t a n − 1 ( x ) ) = x .]
Let us focus on the equation involving ω first. For a simpler equation to work with, let α = t a n − 1 ( x ) + t a n − 1 ( y ) and β = t a n − 1 ( z ) . Hence, ω = α + β .
By the formula for the tangent of a sum, we have t a n ( α ) = 1 − x y x + y and t a n ( ω ) = 1 − t a n ( α ) t a n ( β ) t a n ( α ) + t a n ( β ) . By substitution and simplification, we have:
t a n ( ω ) = 1 − ( x y + y z + z x ) ( x + y + z ) − ( x y z ) .
And we go back to the polynomial expression, where we can use Vieta's formula to find its roots. For the roots x , y , and z of this polynomial, the following equations hold:
( 1 ) x + y + z = 2 7 9 9 ( 2 ) x y + y z + z x = 2 − 4 0 0 ( 3 ) x y z = 2 1
Substituting these values into the expression for t a n ( ω ) , and simplifying, we have t a n ( ω ) = 2 0 1 3 9 9 = 6 7 1 3 3 , and the required answer is a + b = 1 3 3 + 6 7 = 2 0 0 .
Here’s an approach using complex numbers and polynomial factorization, instead of trigs.
Define cubic polynomial f ( u ) : = 2 u 3 − 7 9 9 u 2 − 4 0 0 u − 1 = 2 ( u − x ) ( u − y ) ( u − z ) .
Consider the complex numbers 1 + i x , 1 + i y , 1 + i z whose arguments are tan − 1 x , tan − 1 y , tan − 1 z , respectively.
Then ω is the argument of the product of these complex numbers (up to a multiple of 2 π ): factor out − i for each term ( 1 + i x ) ( 1 + i y ) ( 1 + i z ) = ( − i ) 3 ( i − x ) ( i − y ) ( i − z ) = 2 i ⋅ 2 ( i − x ) ( i − y ) ( i − z ) = 2 i ⋅ f ( i ) = 2 i ( 7 9 8 − 4 0 2 i ) = 2 0 1 + 3 9 9 i , namely, tan ω = 2 0 1 3 9 9 = 6 7 1 3 3 . Thus, a + b = 1 3 3 + 6 7 = 2 0 0 .
That's a nice way to show it.
P.S. Converting to trigonometric form is my favorite way of proving the tangent multiple-angle identity, as it proves us an easy way of seeing the generalization.
Thanks for your comment! Actually, if we expand ( 1 + i x ) ( 1 + i y ) ( 1 + i z ) = ( 1 − ( x y + y z + z x ) ) + i ( x + y + z − x y z ) whose real and imaginary part are consisted of elementary symmetric polynomials of ( x , y , z ) . And this can be used to express tan ω in terms of symmetric polynomials, then apply Vieta’s formula. But for the sake of efficiency, I choose to recognize the expression as a polynomial evaluation.
In fact, complex number approach can be used to derive the general case of tangent multiple-angle identity in terms of elementary symmetric polynomials.
Btw, this approach is based on a previous experience learned from solving an AIME problem:
Find the positive integer n such that arctan 3 1 + arctan 4 1 + arctan 5 1 + arctan n 1 = 4 π . Answer: 4 7 .
First we will show that the roots are indeed all real. To do so we take f ( u ) = 2 u 3 − 7 9 9 u 2 − 4 0 0 u − 1 . So f ′ ( u ) = 6 u 2 − 1 5 9 8 u − 4 0 0 and it's discriminant is obviously greater than zero ⟹ f ′ ( u ) has all real roots ⟹ f ( u ) has all it's roots as real ( Using Intermediate-Value Theorem and the continuity of f(u) ) .
Now using Vieta's Formula we have, x + y + z = 2 7 9 9 , x y + y z + z x = − 2 0 0 , x y z = 2 1 .
We know from inverse trigonometry tan − 1 x + t a n − 1 y = tan − 1 1 − x y x + y , extending it we obtain ω = tan − 1 1 − x y − y z − z x x + y + z − x y z = tan − 1 1 + 2 0 0 2 7 9 9 − 2 1
⟹ ω = tan − 1 6 7 1 3 3
⟹ tan ω = 6 7 1 3 3 = b a
So our answer is a + b = 1 3 3 + 6 7 = 2 0 0
If we wish to find tan ω , we need to first find a formula for tan ( a + b + c ) . Through some basic knowledge of trig identities and algebraic manipulation, we obtain tan ( a + b + c ) = 1 − tan a tan b − tan a tan c − tan b tan c tan a + tan b + tan c − tan a tan b tan c Now we have t a n ω = t a n ( tan − 1 x + tan − 1 y + tan − 1 z ) = 1 − x y − y z − x z x + y + z − x y z Now we have to find the sum of the roots, the product of the roots, and the sum of the pairwise products of the roots. This can be done simply using Vieta's formulas: x + y + z = a n − a n − 1 x y z = ( − 1 ) n a n a 0 x y + y z + x z = a n a n − 2 Now we have t a n ω = 1 + 2 4 0 0 2 7 9 9 − 2 1 which simplifies to 6 7 1 3 3 , which is our final answer. a + b + 133 + 67 = 200.
We know that,
x
,
y
and
z
are the real roots of the cubic equation, so,
x
+
y
+
z
= -
2
−
7
9
9
.....................(1)
x
y
+
y
z
+
z
x
=
2
−
4
0
0
........................(2)
x
y
z
= -
2
−
1
........................(3)
Now,
t
a
n
ω =
t
a
n
(
t
a
n
−
1
x
+
t
a
n
−
1
y
+
t
a
n
−
1
z
)
⇒ t a n ω = 1 − t a n ( t a n − 1 x ) . t a n ( t a n − 1 y ) − t a n ( t a n − 1 y ) . t a n ( t a n − 1 z ) − t a n ( t a n − 1 z ) . t a n ( t a n − 1 x ) t a n ( t a n − 1 x ) + t a n ( t a n − 1 y ) + t a n ( t a n − 1 z ) − t a n ( t a n − 1 x ) . t a n ( t a n − 1 y ) . t a n ( t a n − 1 z )
⇒ t a n ω = 1 − x y − y z − z x x + y + z − x y z
⇒ t a n ω = 1 − 2 − 4 0 0 − 2 − 7 9 9 − ( − 2 − 1 ) [ By putting the value from the equations (1), (2) and (3)]
⇒
t
a
n
ω =
6
7
1
3
3
So, the value of
a
+
b
=
1
3
3
+
6
7
=
2
0
0
[ANSWER]
We use the arctan addition formula to simplify, as follows.
⟹ arctan ( x ) + arctan ( y ) = arctan ( 1 − x y x + y )
⟹ arctan ( x ) + arctan ( y ) + arctan ( z ) = arctan ( 1 − x y x + y ) + arctan ( z )
Again, we apply the arctan formula and we simplify. We get that arctan ( x ) + arctan ( y ) + arctan ( z ) = arctan ( x y + x z + y z − 1 x y z − x − y − z ) . Therefore, tan ω = x y + x z + y z − 1 x y z − ( x + y + z ) . We use Vieta's formulae on 2 u 3 − 7 9 9 u 2 − 4 0 0 u − 1 = 0 . ⟹ x y z = 2 1 , since it is the product of the roots.
⟹ x + y + z = 2 7 9 9 , since it is the sum of the roots.
⟹ x y + x z + y z = − 2 0 0 , since it is the cyclic 2-product of the roots.
Therefore, tan ω = − 2 0 1 2 1 − 2 7 9 9 = 6 7 1 3 3 , so our answer is 1 3 3 + 6 7 = 2 0 0 .
By VIETA'S FORMULA, x + y + z = 7 9 9 / 2 ..... x y + y z + x z = − 4 0 0 / 2 = − 2 0 0 ....... x y z = 1 / 2 ...... w = A + B + C where A = a r c t a n x , B = a r c t a n y , C = a r c t a n z ....... From above we can conclude that t a n A = x , t a n B = y , t a n C = z ............. Now, t a n w = t a n ( A + B + C ) i.e.[ t a n A + t a n B + t a n C - t a n A t a n B t a n C ] / [ 1 − ( t a n A t a n B + t a n B t a n C + t a n A t a n C ) ] .............. which is [ x + y + z - x y z ] / [ 1 − x y − y z − x z ]. { We had found the value of these expressions using vieta's formula. } =[ 7 9 9 / 2 - 1 / 2 ] / [ 1 − ( − 2 0 0 ) ] i.e. =[ 3 9 9 ] / [ 2 0 1 ] = [ 1 3 3 ] / [ 6 7 ] which is in the form a / b .............. Now, a + b = 1 3 3 + 6 7 i.e. 2 0 0 .
Let tan − 1 x = a , tan − 1 y = b , tan − 1 z = c so that tan a = x , tan b = y , tan c = z . Then, we have ω = a + b + c which equivalent with tan ω = tan ( a + b + c ) . By using trigonometric identities, we get tan ( a + b + c ) = 1 − ( tan a . tan b + tan b . tan c + tan c . tan a ) tan a + tan b + tan c − tan a . tan b . tan c which equivalent with tan ω = 1 − ( x y + y z + z x ) x + y + z − x y z Based on Vieta's Formula, we can conclude that x + y + z = 2 7 9 9 , x y + y z + z x = − 2 0 0 , x y z = 2 1 Hence, we get tan ω = 1 + 2 0 0 2 7 9 9 − 2 1 = 2 0 1 3 9 9 = 6 7 1 3 3 We know that 1 3 3 and 6 7 are coprime which giving the answer a + b = 2 0 0 .
We try to simplify the expression tan ( tan − 1 x + tan − 1 y + tan − 1 z ) . Using tangent addition: tan ( tan − 1 x + tan − 1 y ) = 1 − x y x + y We can then say: tan ( tan − 1 1 − x y x + y + tan − 1 z ) = 1 − 1 − x y z ( x + y ) 1 − x y x + y + z = 1 − x y − x z − y z x + y + z − x y z Using Vieta, x + y + z = 2 7 9 9 x y + x z + y z = − 2 0 0 x y z = 2 1 Now, our expression is equal to 1 + 2 0 0 2 7 9 9 − 2 1 = 2 0 1 3 9 9 = 6 7 1 3 3 The answer is 1 3 3 + 6 7 = 2 0 0 .
I like your solution the most because it is clear, explains everything (especially the trigonometric expression part) without being too nitpicky, and it is neatly written and clearly spaced.
Suppose p = tan − 1 x , q = tan − 1 y , r = tan − 1 z .
Therefore, tan ω = tan ( p + q + r )
= 1 − ( tan p tan q + tan r tan p + tan q tan r ) tan p + tan q + tan r − tan p tan q tan r
= 1 − ( x y + y z + z x ) x + y + z − x y z .
According to Vieta's Formulas: x + y + z = 2 7 9 9 , x y + y z + z x = − 2 0 0 , x y z = 2 1 , so tan ω = 1 − ( − 2 0 0 ) 2 7 9 9 − 2 1 = 6 7 1 3 3 .
The answer is: 133+67=200.
good job !
We have, tanw
= tan( t a n − 1 x + t a n − 1 y + t a n − 1 z )
=tan( tan^{-1} \(\frac{x+y+z-xyz}{1-xy-yz-zx} )
We know,
x + y + z = 2 7 9 9
xyz = 1
xy + yz + zx = -200
Putting successively we get,
= 2 0 1 3 9 9
= 6 7 1 3 3
So a+b = 67+133 = 200 (ans)
Simple standard approach.
By information in question, x + y + z = 799/2 , xy + yz + zx = -200 , xyz = 1/2 .............. (i)
w = tan^{-1}(x) + tan^{-1}(y) + tan^{-1}(z)
= tan^{-1}[(x+y)/(1-xy)] + tan^{-1}(z) ........... (Using inverse trigonometric identities)
= tan^{-1}[(x+y+z - xyz) / (1-(xy+yz+zx))]
Now, put values from (i) which gives
tan(w) = 399/201 = 133/67.
Clearly, a = 133, b = 67 and a + b = 200
as we know arctan x+arctan y+arc tan z= arctan[x+y+z-xyz/(1-xy-yz-zx)]=w(given) =>tan w=[x+y+z-xyz/(1-xy-yz-zx)]...........(1) now given equation is 2u^3−799u^2−400u−1=0 as x y and z are= roots (as comparing coefficients with ax^3+bx^2+cx+d) =>sum of roots(-b/a) or x+y+z=799/2.........(2) sum of product of roots(c/a) or xy+yz+zx=-200...............(3) now product of roots(-d/a) or xyz=1/2...........(4) so put all values in (1) we get tan w=399/201 (as a and b are co prime) then tan w=133/67 a+b=133+67=200
We have that tan ( a + b + c ) = 1 − ( tan ( a ) tan ( b ) + tan ( a ) tan ( c ) + tan ( b ) tan ( c ) ) tan ( a ) + tan ( b ) + tan ( c ) − tan ( a ) tan ( b ) tan ( c ) , and by Vieta's Formulas, x + y + z = 2 7 9 9 x y z = 2 1 x y + x z + y z = − 2 0 0
So, we have tan ( ω ) = 1 − ( − 2 0 0 ) 2 7 9 9 − 2 1 = 6 7 1 3 3 .
〖w= tan〗^(-1)〖x +tan^(-1)x+ tan^(-1)z 〗
w =〖 tan〗^(-1)〖(x+y)/(1-xy)〗+ tan^(-1)z
w =〖 tan〗^(-1)〖(x+y+z-xyz)/(1-(xy+yz+zx))〗
We know that x+y+z= 799/2
xy+yz+zx= (-400)/2= -200
xyz= 1/2
Putting these values, we get w = tan^(-1)〖133/67〗
tan〖w= 133/67〗= a/b
Therefore, a + b = 133 + 67 = 200
By V i e t a ′ s f o r m u l a , we know that
x + y + z = 2 7 9 9 ;
x ⋅ y + y ⋅ z + z ⋅ x = − 2 0 0 ;
x ⋅ y ⋅ z = 2 1 ;
Now, suppose tan − 1 x = p , tan − 1 y = q and tan − 1 z = r .
⇒ tan p = x , tan q = y and tan r = z .
Therefore, ω = tan − 1 x + tan − 1 y + tan − 1 z = p + q + r ,
and
tan ω = tan ( p + q + r ) .
In such cases where we have to use e x p a n d e d form of tan ( θ 1 + θ 2 + θ 3 … + θ n ) , it is good to remember a formula derived:
tan ( θ 1 + θ 2 + θ 3 … + θ n ) = 1 − S 2 + S 4 … ∓ S n − 1 S 1 − S 3 + S 5 … ± S n
where
S 1 = sum of tan of angles taken o n e at a time = tan θ 1 + tan θ 2 + tan θ 3 + … + tan θ n
S 2 = sum of tan of angles taken t w o at a time = tan θ 1 ⋅ tan θ 2 + tan θ 2 ⋅ tan θ 3 + …
and similarly, S 3 , S 4 … S n .
⇒ , tan ω = 1 − ( tan p ⋅ tan q + tan q ⋅ tan r + tan r ⋅ tan p ) ( tan p + tan q + tan r ) − ( tan p ⋅ tan q ⋅ tan r ) .
Therefore, tan ω = 1 − ( x ⋅ y + y ⋅ z + z ⋅ x ) ( x + y + z ) − ( x ⋅ y ⋅ z ) = 1 − ( − 2 0 0 ) 2 7 9 9 − 2 1 = 2 0 1 3 9 9 = 6 7 1 3 3
Hence, tan ω = 6 7 1 3 3 = b a
⇒ a = 1 3 3 , b = 6 7 and a + b = 2 0 0
can you please tell me what the vieta's formula is? or post a link of it thanks
Let α = tan − 1 x , β = tan − 1 y , γ = tan − 1 z . Then ω = α + β + γ . tan ω = tan ( α + β + γ ) = 1 − tan α tan ( β + γ ) tan α + tan ( β + γ ) = 1 − tan α 1 − tan β tan γ tan β + tan γ tan α + 1 − tan β tan γ tan β + tan γ = 1 − tan β tan γ − tan α ( tan β + tan γ ) tan α ( 1 − tan β tan γ ) + tan β + tan γ = 1 − y z − x y − x z x + y + z − x y z Since x , y , z are roots of 2 u 3 − 7 9 9 u 2 − 4 0 0 u − 1 = 0 , 2 7 9 9 − 2 0 0 2 1 = x + y + z = x y + x z + y z = x y z Hence tan ω = 1 − ( − 2 0 0 ) 2 7 9 9 − 1 = 6 7 1 3 3
Let A = arctan x , B = arctan y, and C = arctan z If arctan x = A, then x = tan A If arctan y = B, then y = tan B If arctan z = C, then z = tan C Therefore, tan w = tan (A + B + C) Further simplification using tangent formula gives, tan w = ((tan A + tan B + tan C) - (tan A)(tan B)(tan C))/(1 - (tan A + tan B) - (tan A + tan C) - (tan B + tan C)) which is equal to (x + y + z - xyz)/(1 - xy - xz - yz) or by Vieta's Theorem (799/2 - 1/2)/(1 - -400/2) = (798/2)/(402/2) = 399/201 = 133/67 Therefore a = 133 and b = 67 a + b = 133 + 67 = 200
We know that arctan ( x ) + arctan ( y ) + arctan ( z ) = arctan ( 1 − x y x + y ) + arctan ( z ) This is equal to arctan ( 1 − 1 − x y z ( x + y ) z + 1 − x y x + y
Simplifying, we get:
(
1
−
x
y
)
∗
1
−
x
y
−
z
(
x
+
y
z
+
1
−
x
y
x
+
y
⟹
1
−
x
y
−
x
z
−
y
z
x
+
y
+
z
−
x
y
z
By Vieta's, we can substitute in the values:
1
−
(
−
2
0
0
7
9
9
/
2
−
1
/
2
⟹
3
9
9
/
2
0
1
⟹
6
7
1
3
3
Therefore, the answer is
2
0
0
For a polynomial ax^3 +bx^2 +cx+d=0 Adding the roots gives -b/a Here 799/2
Multiplying the roots gives -d/a Here,1/2
We also get xy+yz+zx = c/a Here it is,(-400/2)
So now using the inverse circular formula :-
omega=tan^(-1)[[x+y+z-(xyz)]/[1-(xy+yz+zx)]] Solving we get:- omega=tan^(-1)[133/67] Now, tan(omega)=133/67. Hence a+b=200
A small suggestion: writing your solution in LaTeX makes it more readable. Try practicing LaTeX. You'll get the hang of it in no time!
Refer to the formatting guide for instructions on how to use LaTeX.
Using the addition formula, tan ( a + b + c ) = 1 − ( tan a tan b + tan b tan c + tan c tan a ) tan a + tan b + tan c − tan a tan b tan c . Since ω = tan − 1 x + tan − 1 y + tan − 1 z , let a = tan − 1 x , b = tan − 1 y , c = tan − 1 z , x = tan a , y = tan b , z = tan c , therefore w = a + b + c , tan w = tan ( a + b + c ) = 1 − ( tan a tan b + tan b tan c + tan c tan a ) tan a + tan b + tan c − tan a tan b tan c = 1 − ( x y + y z + z x ) x + y + z − x y z . For a cubic equation a x 3 + b x 2 + c x + d = 0 , the roots are denoted as α , β , γ , then α + β + γ = − a b , α β + β γ + γ α = a c , and α β γ = − a d . Since x, y and z are the real roots of 2 u 3 − 7 9 9 u 2 − 4 0 0 u − 1 = 0 , x + y + z = − 2 − 7 9 9 = 2 7 9 9 , x y + y z + z x = 2 − 4 0 0 = − 2 0 0 , x y z = − 2 − 1 = 2 1 . Therefore, tan w = 1 − ( − 2 0 0 ) 2 7 9 9 − 2 1 = 2 0 1 3 9 9 = 6 7 1 3 3 , 1 3 3 + 6 7 = 2 0 0 .
as we know arctan x+arctan y+arc tan z= arctan[x+y+z-xyz/(1-xy-yz-zx)]=w(given) =>tan w=[x+y+z-xyz/(1-xy-yz-zx)]...........(1) now given equation is 2u^3−799u^2−400u−1=0 as x y and z are= roots (as comparing coefficients with ax^3+bx^2+cx+d) =>sum of roots(-b/a) or x+y+z=799/2.........(2) sum of product of roots(c/a) or xy+yz+zx=-200...............(3) now product of roots(-d/a) or xyz=1/2...........(4) so put all values in (1) we get tan w=399/201 (as a and b are co prime) then tan w=133/67 a+b=133+67=200
For simplicity of notation let's denote tan − 1 x = a , tan − 1 y = b , tan − 1 z = c . The tangent of w is the tangent of the sum of three arcs.
Since tan ( k + l ) = 1 − tan k ∗ tan l tan k + tan l we get tan w = 1 − tan a ∗ 1 − tan b ∗ tan c tan b + tan c tan a + 1 − tan b ∗ tan c tan b + tan c Rearranging, we get tan w = 1 − ( tan a ∗ tan b + tan a ∗ tan c + tan b ∗ tan c ) tan a + tan b + tan c − ( tan a ∗ tan b ∗ tan c ) , which is the sum of the roots minus the product of the roots, all divided by one minus the product two by two of the roots, since tan ( tan − 1 x ) = x
Looking at the equation we have s u m = − ( − 7 9 9 ) / 2 = 7 9 9 / 2 , p r o d u c t = − ( − 1 ) / 2 = 1 / 2 , p r o d u c t 2 b y 2 = − 4 0 0 / 2 so tan w = 1 3 3 / 6 7 .
The answer is 133 + 67 = 200
Let a=tan^-1 x, b= tan^-1 y and c= tan^-1 z so tan a=x, tan b=y and tan c=z tan (a+b)=\frac {tan a + tan b}{1-tan a tan b} tan (a+b)=\frac {x+y}{1-xy} tan ω= tan (a+b+c)= \frac {tan (a+b)+tan c}{1-tan (a+b) tan c} tan ω=\frac {\frac {x+y}{1-xy}+z} {1- \frac {x+y}{1-xy} *z}=\frac {x+y+z-xyz}{1-(xy+xz+yz)} Vieta's Formula x+y+z=799/2, xy+xz+yz=-200, xyz=1/2 then tan ω=\frac {133}{67} and the answer is 133+67=\underline{200}
If x , y , z are solutions of u 3 + a u 2 + b u + c = 0 , then, ( u − x ) ( u − y ) ( u − z ) = u 3 + a u 2 + b u + c = 0 , implies, x + y + z = − a , x y + y z + z x = b , x y z = c . Together with the identity tan ( p + q + r ) = 1 − ( tan p tan q + tan q tan r + tan r tan p ) tan p + tan q + tan r − tan p tan q tan r applied to tan ω gives the answer.
We use the tangent sum of angles formula.
tan ω = tan ( tan − 1 x + tan − 1 y + tan − 1 z ) = 1 − tan tan − 1 x ⋅ tan ( tan − 1 y + tan − 1 z ) tan tan − 1 x + tan ( tan − 1 y + tan − 1 z )
tan ( tan − 1 y + tan − 1 z ) = 1 − y z y + z and so tan ω = 1 − x ⋅ 1 − y z y + z x + 1 − y z y + z = 1 − ( x y + x z + y z ) x + y + z − x y z
Since x , y , z are the solutions to the cubic, using Viete's gives x + y + z = 2 7 9 9 , x y + x z + y z = 2 − 4 0 0 = − 2 0 0 , x y z = 2 1 and substituting those in give:
tan ω = 1 − ( − 2 0 0 ) 2 7 9 9 − 2 1 = 2 0 1 3 9 9 = 6 7 1 3 3 and thus a + b = 1 3 3 + 6 7 = 2 0 0
tan ( a + b + c ) = 1 − tan a 1 − tan b tan c tan b + tan c tan a + 1 − tan a tan b tan b + tan c = 1 − x 1 − y z y + z x + 1 − y z y + z = 1 − ( x y + x z + y z ) ( x + y + z ) − x y z = 1 − 2 − 4 0 0 − 2 − 7 9 9 − ( − 2 − 1 ) = 6 7 1 3 3
Thus, a + b = 1 3 3 + 6 7 = 2 0 0
As x , y and z are the roots of the given equation which is of the form
f ( u ) = au ^3 + bu ^2 + cu + d , we have
x + y + z = \frac{- b }{ a } = -\frac{-799}{2} = \frac{799}{2} ....eq\bigcrc{1}
xy + yz + zx = \frac{ c }{ a } = \frac{-400}{2} = -200 ....eq\bigcirc{2}
xyz = \frac{- d }{ a } = -\frac{-1}{2} = \frac{1}{2} ....eq\bigcirc{3}
Applying the identity tan^{-1} x + tan^{-1} y = tan^{-1}{\frac{ x + y }{1 - xy } twice for \omega , we get
\omega = tan^{-1}\frac{ x + y + z - xyz }{1 - ( xy + yz + zx )}
Substituting eq\bigcirc{1} , eq\bigcirc{2} and eq\bigcirc{3} in the above equation , we get
\omega = \frac{399}{201} , but the numerator and denominator should be coprime . Therefore , \frac{a}{b} = \frac{133}{67} . Hence , a + b = 200
For every real numbers
a
,
b
,
c
we know that
tan
(
a
+
b
+
c
)
=
1
−
tan
(
a
)
tan
(
b
+
c
)
tan
(
a
)
+
tan
(
b
+
c
)
=
1
−
tan
a
1
−
tan
b
tan
c
tan
b
+
tan
c
tan
a
+
1
−
tan
b
tan
c
tan
b
+
tan
c
=
1
−
tan
a
tan
b
−
tan
b
tan
c
−
tan
a
tan
c
−
tan
a
tan
b
tan
c
+
tan
a
+
tan
b
+
tan
c
Since
x
,
y
,
z
are real numbers, we can set
a
=
tan
−
1
x
,
b
=
tan
−
1
y
,
c
=
t
a
n
−
1
z
In other words,
x
=
tan
a
,
y
=
tan
y
,
z
=
t
a
n
c
By Vieta's formula, we get
x
+
y
+
z
=
tan
a
+
tan
b
+
tan
c
=
2
7
9
9
x
y
+
x
z
+
y
z
=
tan
a
tan
b
+
tan
b
tan
c
+
tan
a
tan
c
=
−
2
0
0
x
y
z
=
tan
a
tan
b
tan
c
=
2
1
We have proved that
tan
(
a
+
b
+
c
)
=
1
−
tan
a
tan
b
−
tan
b
tan
c
−
tan
a
tan
c
−
tan
a
tan
b
tan
c
+
tan
a
+
tan
b
+
tan
c
By substituting the value of
tan
a
+
tan
b
+
tan
c
,
tan
a
tan
b
+
tan
b
tan
c
+
tan
a
tan
c
,
tan
a
tan
b
tan
c
we get
tan
(
a
+
b
+
c
)
=
1
+
2
0
0
−
2
1
+
2
7
9
9
=
6
7
1
3
3
Note that
tan
ω
=
tan
(
a
+
b
+
c
)
=
6
7
1
3
3
Therefore, the value of
a
+
b
is
1
3
3
+
6
7
=
2
0
0
Using the formula for t a n ( A + B + C ) . (See here . ), we get t a n ( ω ) = 1 − ( x y + y z + x z ) x + y + z − x y z . By Vieta's formula, x + y + z = 3 9 9 . 5 , x y z = 0 . 5 , x y + y z + x z = 2 0 0 . Substituting gives the answer 6 7 1 3 3 . So, a + b = 2 0 0 .
we know tan − 1 x + tan − 1 y = tan − 1 1 − x y x + y
so tan ω = 1 − x y − x z − y z x + y + z − x y z
Also ( u − x ) ( u − y ) ( u − z ) = u 3 − ( x + y + z ) u 2 + ( x y + y z + z x ) u − ( x y z )
so x + y + z = 2 7 9 9 , x y z = 2 1 , x y + y z + z x = − 2 0 0
tan ω = 6 7 1 3 3
The sum of tangents identity gives us tan ( α + β ) = 1 − tan α tan β tan α + tan β . By letting α = tan − 1 x and β = tan − 1 y , we obtain tan − 1 x + tan − 1 y = tan − 1 ( 1 − x y x + y ) . (This identity derived here: https://brilliant.org/discussions/thread/trigometry-paradox/) By applying this identity twice to the value of w , we obtain w = tan − 1 ( 1 − ( 1 − x y x + y z ) 1 − x y x + y + z ) Multiplying the numerator and the denominator of the complex fraction by 1 − x y we obtain w = tan − 1 ( 1 − x y − x z − y z x + y + z − x y z ) Denoting the k th symmetric sum of the given roots as δ k , we see that tan w = 1 − δ 2 δ 1 − δ 3 . By Vieta, the previous easily evaluates to tan w = 1 − 2 − 4 0 0 2 7 9 9 − 2 1 = 2 0 1 3 9 9 = 6 7 1 3 3 . The sum of the numerator and the denominator is 2 0 0 .
Lets first start off with finding an expression for tan ω in terms of x , y , z . Using the tangent addition formula for just t a n − 1 ( x ) + t a n − 1 ( y ) , we get ( x + y ) / ( 1 − y x ) . Now, using the tangent addition formula again with tan − 1 ( z ) and the sum of t a n − 1 ( x ) + t a n − 1 ( y ) as the arguments, we get ( x + y + z − x y z ) / ( 1 − ( x y + y z + x z ) . We know from Vieta's Formula that x + y + z = 7 9 9 / 2 , x y + y z + x z = − 2 0 0 , and x y z = 1 / 2 . Substituting these numbers into the derived formula, we get 1 3 3 / 6 7 . Their sum is 1 3 3 + 6 7 = 2 0 0
We know,by addition formulaes,that: ( t g ( a ) + t g ( b ) + t g ( c ) − t g ( a ) t g ( b ) t g ( c ) ) / ( 1 − ( t g ( a ) t g ( b ) + t g ( a ) t g ( c ) + t g ( b ) t g ( c ) )
So as tg(a)+tg(b)+tg(c)=799/2
tg(a)tg(b)tg(c)=1/2
and tg(a)tg(b)+tg(a)tg(c)+tg(b)tg(c)=400/2
By the Girard's theorem we have
t g ( w ) = 1 3 3 / 6 7
Using Vieta's Formula we'll get to 3 equations: $$ S 1 = \frac{799}{2}, S 2 = -200, S 3 = P = \frac{1}{2} $$ Knowing that tan ( arctan ( x ) ) = x and calling arctan ( x ) = α , arctan ( y ) = β , arctan ( z ) = γ we'll just need to calculate tan ( α + β + γ ) : $$ \tan(\alpha + \beta + \gamma) = \frac{\tan(\alpha + \beta) + z}{1 - \tan(\alpha + \beta)\cdot z} $$ Calculating again: $$ \tan(\alpha + \beta + \gamma) = \frac{x + y + z - xyz}{1 - xy - xz - yz} $$ Which is clearly: $$ \frac{S 1 - P}{1 - S_2} = \frac{399}{201} = \frac{133}{67} $$ So, a + b = 1 3 3 + 6 7 = 2 0 0
Call the left-hand side of the equation ρ ( u ) and notice that ω is the angle of the complex number
2 ( 1 + i x ) ( 1 + i y ) ( 1 + i z )
= 2 i ( i − x ) ( i − y ) ( i − z )
= i ρ ( i )
= i ( − 2 i + 7 9 9 − 4 0 0 i − 1 )
= 4 0 2 + 7 9 8 i
Therefore, tan ω = 4 0 2 7 9 8 = 6 7 1 3 3 and a + b = 1 3 3 + 6 7 = 2 0 0 .
Note: Depending on the definition used for arctan, ω might be the angle of − i ρ ( i ) rather than i ρ ( i ) . But that won't alter the value of tan ω .
but it has only one real root and other two are complex i.e. 599.50,-0.028880i and 0.028880i
Neeraj, there are three real roots. What makes you say that?
Problem Loading...
Note Loading...
Set Loading...
We want to find the value of tan ( tan − 1 x + tan − 1 y + tan − 1 z ) . Using the well-known tangent addition formula:
we have tan ( tan − 1 x + tan − 1 y + tan − 1 z ) = 1 − tan ( tan − 1 x + tan − 1 y ) ⋅ z tan ( tan − 1 x + tan − 1 y ) + z = 1 − 1 − x y x + y ⋅ z 1 − x y x + y + z = 1 − 1 − x y x + y ⋅ z 1 − x y x + y + z ⋅ 1 − x y 1 − x y = ( 1 − x y ) − ( x + y ) z ( x + y ) + ( 1 − x y ) z = 1 − ( x y + x z + y z ) x + y + z − x y z By Vieta's Formulas, we have x + y + z = 2 7 9 9 , x y + x z + y z = − 2 4 0 0 = − 2 0 0 , x y z = 2 1 , so 1 − ( x y + x z + y z ) x + y + z − x y z = 1 + 2 0 0 2 7 9 9 − 2 1 = 2 0 1 3 9 9 = 6 7 1 3 3 . The answer is 1 3 3 + 6 7 = 2 0 0 .