Russelle's triple tangent

Algebra Level 4

Let x , y , z x, y, z be the real roots of the cubic equation

2 u 3 799 u 2 400 u 1 = 0 2u^3-799u^2-400u-1=0

and let ω = tan 1 x + tan 1 y + tan 1 z \omega = \tan^{-1} x+\tan^{-1} y+\tan^{-1} z . If tan ω = a b \tan \omega = \frac{a}{b} , where a a and b b are positive coprime integers, what is the value of a + b a+b ?

This problem is posed by Russelle G .


The answer is 200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

40 solutions

Michael Tang
Jul 23, 2013

We want to find the value of tan ( tan 1 x + tan 1 y + tan 1 z ) . \tan(\tan^{-1}x+\tan^{-1}y+\tan^{-1}z). Using the well-known tangent addition formula:

For all real numbers a , b , a, b, we have tan ( a + b ) = tan a + tan b 1 tan a tan b \tan(a+b) = \dfrac{\tan a + \tan b}{1 - \tan a \tan b} (if these tangents are defined).

we have tan ( tan 1 x + tan 1 y + tan 1 z ) \tan(\tan^{-1}x+\tan^{-1}y+\tan^{-1}z) = tan ( tan 1 x + tan 1 y ) + z 1 tan ( tan 1 x + tan 1 y ) z = \dfrac{\tan(\tan^{-1}x+\tan^{-1}y) + z}{1 - \tan(\tan^{-1}x+\tan^{-1}y) \cdot z} = x + y 1 x y + z 1 x + y 1 x y z = \dfrac{\dfrac{x+y}{1-xy} + z}{1 - \dfrac{x+y}{1-xy} \cdot z} = x + y 1 x y + z 1 x + y 1 x y z 1 x y 1 x y = \dfrac{\dfrac{x+y}{1-xy} + z}{1 - \dfrac{x+y}{1-xy} \cdot z} \cdot \dfrac{1-xy}{1-xy} = ( x + y ) + ( 1 x y ) z ( 1 x y ) ( x + y ) z = \dfrac{(x+y) + (1-xy)z}{(1-xy) - (x+y)z} = x + y + z x y z 1 ( x y + x z + y z ) = \dfrac{x+y+z-xyz}{1-(xy+xz+yz)} By Vieta's Formulas, we have x + y + z = 799 2 , x+y+z = \dfrac{799}{2}, x y + x z + y z = 400 2 = 200 , xy+xz+yz = -\dfrac{400}{2} = -200, x y z = 1 2 , xyz = \dfrac{1}{2}, so x + y + z x y z 1 ( x y + x z + y z ) = 799 2 1 2 1 + 200 = 399 201 = 133 67 . \dfrac{x+y+z-xyz}{1-(xy+xz+yz)} = \dfrac{\dfrac{799}{2} - \dfrac{1}{2}}{1 + 200} = \dfrac{399}{201} = \dfrac{133}{67}. The answer is 133 + 67 = 200 . 133+67 = \boxed{200}.

Moderator note:

Nice solution, similar to all other correct solutions. Several solutions contained a proof that the roots are real, which is not necessary, since it is explicitly specified in the problem.

I realize all the comments here are a couple years old ... but nevertheless I have to ask: Did anyone consider what you get if you plug u = i u=i into the polynomial?

Peter Byers - 5 years, 7 months ago

Log in to reply

After putting u = i u = i in the Polynomial Function : P ( u ) = 2 u 3 799 u 2 400 u 1 P(u) = 2u^3 - 799u^2 - 400u - 1 this is what you get:

P ( i ) = 402 i + 798 P(i) = -402i + 798

Kushashwa Ravi Shrimali - 5 years, 6 months ago

What is new in that

Prince Loomba - 4 years, 4 months ago

this is like really good solution

ALLAN YUAN - 1 year, 6 months ago
Derek Khu
Jul 22, 2013

We first establish the nature of the three roots. Let f ( u ) = 2 u 3 799 u 2 400 u 1 f(u) = 2u^3-799u^2-400u-1 . Then we find that f ( 1 ) = 401 < 0 , f ( 0.1 ) = 31.008 > 0 , f ( 0 ) = 1 < 0 f(-1) = -401 < 0, f(-0.1) = 31.008 > 0, f(0) = -1 < 0 . By the Intermediate Value Theorem, we know that there is a real root between 1 -1 and 0.1 -0.1 and another real root between 0.1 -0.1 and 0 0 . Also, we can apply Vieta's formula to find that x y z = 1 2 , x y + y z + z x = 400 2 = 200 , x + y + z = 799 2 xyz = \frac{1}{2}, xy+yz+zx=\frac{-400}{2}=-200, x+y+z=\frac{799}{2} . Since the product of the three roots is a positive real number and we know that two of the roots are negative real numbers, the last root must be a positive real number. Without loss of generality, we let the roots be in the order x < y < z x < y < z .

We now use the inverse trigonometric identity tan 1 m + tan 1 n = tan 1 m + n 1 m n \tan^{-1} m + \tan^{-1} n = \tan^{-1} \frac{m+n}{1-mn} for m n < 1 mn < 1 . Since x , y x,y are both negative with magnitudes less than 1 1 , then their product would be positive but less than 1 1 . So we may apply the identity on x , y x, y and get ω = tan 1 x + tan 1 y + tan 1 z = tan 1 x + y 1 x y + tan 1 z \omega = \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \frac{x+y}{1-xy} + \tan^{-1} z . Since x , y x, y are both negative, their sum would be negative. So x + y < 0 x+y < 0 and x y < 1 xy < 1 , and we can easily deduce that x + y 1 x y \frac{x+y}{1-xy} is negative. But z z is positive, so we clearly have x + y 1 x y z < 0 < 1 \frac{x+y}{1-xy} \cdot z < 0 < 1 , and we apply thus apply the identity on x + y 1 x y , z \frac{x+y}{1-xy}, z to get ω = tan 1 x + y 1 x y + tan 1 z = tan 1 x + y 1 x y + z 1 x + y 1 x y z \omega = \tan^{-1} \frac{x+y}{1-xy} + \tan^{-1} z = \tan^{-1} \dfrac{\frac{x+y}{1-xy}+z}{1-\frac{x+y}{1-xy} \cdot z} . Manipulating this expression gives us ω = tan 1 ( x + y + z ) x y z 1 ( x y + y z + z x ) \omega = \tan^{-1} \frac{(x+y+z)-xyz}{1-(xy+yz+zx)} . We have already calculated earlier the values of x y z , x y + y z + z x , x + y + z xyz, xy+yz+zx, x+y+z , so we can substitute these into the expression for ω \omega we get ω = tan 1 133 67 \omega = \tan^{-1} \frac{133}{67} . So we have tan ω = 133 67 \tan \omega = \frac{133}{67} , and the answer we want is 133 + 67 = 200 133 + 67 = \boxed{200} .

By compound angle formulae, t a n ( ω ) = t a n ( x + y + z ) = x + y + z x y z 1 ( x y + y z + z x ) tan(\omega)=tan(x+y+z)=\frac{x+y+z-xyz}{1-(xy+yz+zx)} .But by Vieta's formula, x + y + z = 399.5 , x y z = 0.5 , x y + y z + x z = 200 x+y+z=399.5,xyz=0.5,xy+yz+xz=200 . Substituting yields t a n ( ω ) = 133 67 tan(\omega) =\frac{133}{67} . Thus, a + b = 200 a+b=200 .

Pi Han Goh
Jul 22, 2013

We must first prove that all the 3 roots real.

Let f ( u ) = 2 u 3 799 u 2 400 u 1 = 0 f(u) = 2u^3 - 799u^2 - 400u - 1 = 0 .

f ( 1 2 < 0 , f ( 1 3 > 0 , f ( 0 ) < 0 , f ( 401 ) > 0 f( - \frac {1}{2} < 0, f( - \frac {1}{3} > 0, f(0) < 0, f(401) > 0 .

So there exist at least one root between ( 1 2 , 1 3 ) , ( 1 3 , 0 ) , ( 0 , 401 ) (- \frac {1}{2}, - \frac {1}{3}), (- \frac {1}{3}, 0), (0, 401) . Hence, all roots are real.

Thus, arctan ( tan x ) = x , arctan ( tan y ) = y , arctan ( tan z ) = z \arctan (\tan x) = x, \arctan (\tan y) = y, \arctan (\tan z) = z are real and valid.

By Vieta's formula, x + y + z = 799 2 , x y + x z + y z = 200 , x y z = 1 2 x+y+z = \frac {799}{2}, xy+xz + yz=-200, xyz = \frac {1}{2}

Because ω = arctan x + arctan y + arctan z \omega = \arctan x + \arctan y + \arctan z

tan ω = tan ( arctan x + arctan y + arctan z ) \tan \omega = \tan ( \arctan x + \arctan y + \arctan z )

By Compound angle formula

tan ω = tan ( ( arctan x + arctan y ) + arctan z ) \tan \omega = \tan ( (\arctan x + \arctan y ) + \arctan z )

tan ω = x + y 1 x y + z 1 x + y 1 x y z \LARGE \tan \omega = \frac { \frac {x + y}{1 -xy} + z } { 1 - \frac {x + y}{1 -xy} \cdot z }

tan ω = ( x + y + z ) ( x y z ) 1 ( x y + x z + y z ) \large \tan \omega = \frac { (x + y + z) - (xyz) } {1 - (xy+xz+yz) }

Substitute the values gives

tan ω = 133 67 a = 133 , b = 67 a + b = 200 \tan \omega = \frac {133}{67} \Rightarrow a=133,b=67 \Rightarrow a+b=\boxed{200}

Good solution. However, I don't think you have to prove that the roots are real, since it is given in the problem that they are.

Michael Tang - 7 years, 10 months ago
Jan J.
Jul 22, 2013

Note the identity $$\tan (a + b + c) = \frac{\tan a + \tan b + \tan c - \tan a \tan b \tan c}{1 - (\tan a \tan b + \tan b \tan c + \tan c \tan a)}$$ Take a = arctan x a = \arctan x , b = arctan y b = \arctan y and c = arctan z c = \arctan z , then $$\tan \Big(\arctan x + \arctan y + \arctan z\Big) = \tan \omega = \frac{x + y + z - xyz}{1 - (xy + yz + zx)}$$ By Viete's formulae we have $$x + y + z = \frac{799}{2}$$ $$xy + yz + zx = \frac{-400}{2} = -200$$ $$xyz = \frac{1}{2}$$ Hence $$\tan \omega = \frac{\frac{799}{2} - \frac{1}{2}}{1 + 200} = \frac{133}{67}$$ So $$a + b = 133 + 67 = \boxed{200}$$

[Without loss of generality, the values of x , y , x, y, and z z lie within R \mathbb{R} . By the properties of tangent and arctangent, therefore, t a n ( t a n 1 ( x ) ) = x tan(tan^{-1}(x)) = x .]

Let us focus on the equation involving ω \omega first. For a simpler equation to work with, let α = t a n 1 ( x ) + t a n 1 ( y ) \alpha = tan^{-1}(x) + tan^{-1}(y) and β = t a n 1 ( z ) \beta = tan^{-1}(z) . Hence, ω = α + β \omega = \alpha + \beta .

By the formula for the tangent of a sum, we have t a n ( α ) = x + y 1 x y tan(\alpha) = \frac {x + y} {1 - xy} and t a n ( ω ) = t a n ( α ) + t a n ( β ) 1 t a n ( α ) t a n ( β ) tan(\omega) = \frac {tan(\alpha) + tan(\beta)} {1 - tan(\alpha)tan(\beta)} . By substitution and simplification, we have:

t a n ( ω ) = ( x + y + z ) ( x y z ) 1 ( x y + y z + z x ) tan(\omega) = \frac {(x + y + z) - (xyz)} {1 - (xy + yz + zx)} .

And we go back to the polynomial expression, where we can use Vieta's formula to find its roots. For the roots x , y , x, y, and z z of this polynomial, the following equations hold:

( 1 ) x + y + z = 799 2 ( 2 ) x y + y z + z x = 400 2 ( 3 ) x y z = 1 2 (1) x + y + z = \frac {799} {2} \\ (2) xy + yz + zx = \frac {-400} {2} \\ (3) xyz = \frac {1} {2}

Substituting these values into the expression for t a n ( ω ) tan(\omega) , and simplifying, we have t a n ( ω ) = 399 201 = 133 67 tan(\omega) = \frac {399} {201} = \frac {133} {67} , and the required answer is a + b = 133 + 67 = 200 \boxed {a + b = 133 + 67 = 200} .

Vens L.
Sep 23, 2019

Here’s an approach using complex numbers and polynomial factorization, instead of trigs.

Define cubic polynomial f ( u ) : = 2 u 3 799 u 2 400 u 1 = 2 ( u x ) ( u y ) ( u z ) . f(u) := 2u^3 - 799u^2 - 400u - 1 = 2(u - x)(u - y)(u - z).

Consider the complex numbers 1 + i x , 1 + i y , 1 + i z 1 + ix, 1+iy, 1+iz whose arguments are tan 1 x , tan 1 y , tan 1 z \tan^{-1}x, \tan^{-1}y, \tan^{-1}z , respectively.

Then ω \omega is the argument of the product of these complex numbers (up to a multiple of 2 π 2\pi ): ( 1 + i x ) ( 1 + i y ) ( 1 + i z ) factor out i for each term = ( i ) 3 ( i x ) ( i y ) ( i z ) = i 2 2 ( i x ) ( i y ) ( i z ) = i 2 f ( i ) = i 2 ( 798 402 i ) = 201 + 399 i , \begin{aligned} \underbrace{(1+ix)(1+iy)(1+iz)}_{\text{factor out } -i \text{ for each term}} &= (-i)^{3}(i-x)(i-y)(i-z) \\ &= \frac{i}{2} \cdot 2(i-x)(i-y)(i-z) \\ &= \frac{i}{2} \cdot f(i) \\ &= \frac{i}{2}(798 - 402i) \\ &= 201 + 399i, \end{aligned} namely, tan ω = 399 201 = 133 67 . \tan \omega = \frac{399}{201} = \frac{133}{67}. Thus, a + b = 133 + 67 = 200 . a+b = 133 + 67 = \boxed{\mathbf{200}}.

That's a nice way to show it.

P.S. Converting to trigonometric form is my favorite way of proving the tangent multiple-angle identity, as it proves us an easy way of seeing the generalization.

Calvin Lin Staff - 1 year, 8 months ago

Thanks for your comment! Actually, if we expand ( 1 + i x ) ( 1 + i y ) ( 1 + i z ) = ( 1 ( x y + y z + z x ) ) + i ( x + y + z x y z ) (1+ix)(1+iy)(1+iz) = (1 - (xy+yz+zx)) + i (x+y+z - xyz) whose real and imaginary part are consisted of elementary symmetric polynomials of ( x , y , z ) (x,y,z) . And this can be used to express tan ω \tan \omega in terms of symmetric polynomials, then apply Vieta’s formula. But for the sake of efficiency, I choose to recognize the expression as a polynomial evaluation.

In fact, complex number approach can be used to derive the general case of tangent multiple-angle identity in terms of elementary symmetric polynomials.

Btw, this approach is based on a previous experience learned from solving an AIME problem:

Find the positive integer n n such that arctan 1 3 + arctan 1 4 + arctan 1 5 + arctan 1 n = π 4 . \arctan \frac{1}{3} + \arctan \frac{1}{4} + \arctan \frac{1}{5} + \arctan \frac{1}{n} = \frac{\pi}{4}. Answer: 47 \boxed{47} .

Vens L. - 1 year, 8 months ago
Nishant Sharma
Jul 25, 2013

First we will show that the roots are indeed all real. To do so we take f ( u ) = f(u) =\: 2 u 3 799 u 2 400 u 1 2u^{3} - 799u^{2} - 400u -1 . So f ( u ) = f'(u) =\: 6 u 2 1598 u 400 6u^{2} - 1598u - 400 and it's discriminant is obviously greater than zero \implies\: f ( u ) f'(u) has all real roots \implies\: f ( u ) f(u) has all it's roots as real ( \big( Using Intermediate-Value Theorem and the continuity of f(u) ) \big) .

Now using Vieta's Formula we have, x + y + z = x + y + z =\: 799 2 \displaystyle\frac{799}{2} , x y + y z + z x = 200 , xy + yz + zx =\:-200 , x y z = ,xyz =\: 1 2 \displaystyle\frac{1}{2} .

We know from inverse trigonometry tan 1 x + t a n 1 y = \tan^{-1}x + tan^{-1}y =\: tan 1 x + y 1 x y \displaystyle\tan^{-1}\frac{x + y}{1-xy} , extending it we obtain ω = \omega =\: tan 1 x + y + z x y z 1 x y y z z x \displaystyle\tan^{-1}\frac{x + y + z - xyz}{1 - xy - yz - zx} = =\: tan 1 799 2 1 2 1 + 200 \displaystyle\tan^{-1}\frac{\frac{799}{2} - \frac{1}{2}}{1 + 200}

\implies\: ω = \omega =\: tan 1 133 67 \displaystyle\tan^{-1}\frac{133}{67}

\implies\: tan ω = \tan\omega=\: 133 67 \frac{133}{67} = =\: a b \frac{a}{b}

So our answer is a + b = a + b =\: 133 + 67 = 133 + 67 =\: 200 \boxed{200}

Armin Namavari
Jul 25, 2013

If we wish to find tan ω \tan\omega , we need to first find a formula for tan ( a + b + c ) \tan(a + b + c) . Through some basic knowledge of trig identities and algebraic manipulation, we obtain tan ( a + b + c ) = tan a + tan b + tan c tan a tan b tan c 1 tan a tan b tan a tan c tan b tan c \tan(a + b + c) = \dfrac{\tan{a} + \tan{b} + \tan{c} - \tan{a}\tan{b}\tan{c}}{1 - \tan{a}\tan{b} - \tan{a}\tan{c} - \tan{b}\tan{c}} Now we have t a n ω = t a n ( tan 1 x + tan 1 y + tan 1 z ) = x + y + z x y z 1 x y y z x z tan\omega = tan(\tan^{-1}x + \tan^{-1}y + \tan^{-1}z) = \dfrac{x + y + z - xyz}{1 - xy - yz - xz} Now we have to find the sum of the roots, the product of the roots, and the sum of the pairwise products of the roots. This can be done simply using Vieta's formulas: x + y + z = a n 1 a n x + y + z = \dfrac{-a_{n - 1}}{a_n} x y z = ( 1 ) n a 0 a n xyz = (-1)^n \dfrac{a_0}{a_n} x y + y z + x z = a n 2 a n xy + yz + xz = \dfrac{a_{n - 2}}{a_n} Now we have t a n ω = 799 2 1 2 1 + 400 2 tan\omega = \dfrac{\dfrac{799}{2} - \dfrac{1}{2}}{1 + \dfrac{400}{2}} which simplifies to 133 67 \dfrac{133}{67} , which is our final answer. a + b + 133 + 67 = 200.

Debjit Mandal
Jul 24, 2013

We know that, x x , y y and z z are the real roots of the cubic equation, so,
x x + y y + z z = - 799 2 \frac{-799}{2} .....................(1)
x x y y + y y z z + z z x x = 400 2 \frac{-400}{2} ........................(2)
x x y y z z = - 1 2 \frac{-1}{2} ........................(3)
Now, t a n tan ω = t a n tan ( t a n 1 tan^{-1} x x + t a n 1 tan^{-1} y y + t a n 1 tan^{-1} z z )



t a n tan ω = t a n ( t a n 1 x ) + t a n ( t a n 1 y ) + t a n ( t a n 1 z ) t a n ( t a n 1 x ) . t a n ( t a n 1 y ) . t a n ( t a n 1 z ) 1 t a n ( t a n 1 x ) . t a n ( t a n 1 y ) t a n ( t a n 1 y ) . t a n ( t a n 1 z ) t a n ( t a n 1 z ) . t a n ( t a n 1 x ) \frac{tan(tan^{-1}x) + tan(tan^{-1}y) + tan(tan^{-1}z) - tan(tan^{-1}x).tan(tan^{-1}y).tan(tan^{-1}z)}{1 - tan(tan^{-1}x).tan(tan^{-1}y) - tan(tan^{-1}y).tan(tan^{-1}z) - tan(tan^{-1}z).tan(tan^{-1}x)}

t a n tan ω = x + y + z x y z 1 x y y z z x \frac{x + y + z - xyz}{1 - xy - yz - zx}

t a n tan ω = 799 2 ( 1 2 ) 1 400 2 \frac{-\frac{-799}{2} - (-\frac{-1}{2})}{1 - \frac{-400}{2}} [ By putting the value from the equations (1), (2) and (3)]

t a n tan ω = 133 67 \frac{133}{67}
So, the value of a a + b b = 133 133 + 67 67 = 200 200 [ANSWER]

Ahaan Rungta
Jul 23, 2013

We use the arctan addition formula to simplify, as follows.

arctan ( x ) + arctan ( y ) = arctan ( x + y 1 x y ) \implies \arctan (x) + \arctan (y) = \arctan \left( \dfrac {x+y}{1-xy} \right)

arctan ( x ) + arctan ( y ) + arctan ( z ) = arctan ( x + y 1 x y ) + arctan ( z ) \implies \arctan (x) + \arctan (y) + \arctan (z) = \arctan \left( \dfrac {x+y}{1 - xy} \right) + \arctan \left( z \right)

Again, we apply the arctan formula and we simplify. We get that arctan ( x ) + arctan ( y ) + arctan ( z ) = arctan ( x y z x y z x y + x z + y z 1 ) . \arctan (x) + \arctan (y) + \arctan (z) = \arctan \left( \dfrac {xyz - x - y - z}{xy + xz + yz - 1} \right). Therefore, tan ω = x y z ( x + y + z ) x y + x z + y z 1 . \tan \omega = \dfrac {xyz - \left( x+y+z \right)}{xy+xz+yz-1}. We use Vieta's formulae on 2 u 3 799 u 2 400 u 1 = 0. 2u^3 - 799u^2 - 400u - 1 = 0. x y z = 1 2 \implies xyz = \dfrac {1}{2} , since it is the product of the roots.

x + y + z = 799 2 \implies x + y + z = \dfrac {799}{2} , since it is the sum of the roots.

x y + x z + y z = 200 \implies xy + xz + yz = -200 , since it is the cyclic 2-product of the roots.

Therefore, tan ω = 1 2 799 2 201 = 133 67 , \tan \omega = \dfrac {\dfrac {1}{2} - \dfrac {799}{2}}{-201} = \dfrac {133}{67}, so our answer is 133 + 67 = 200 133+67=\boxed{200} .

Akku Sharma
Jul 22, 2013

By VIETA'S FORMULA, x + y + z x+y+z = 799 / 2 799/2 ..... x y + y z + x z xy+yz+xz = 400 / 2 -400/2 = 200 -200 ....... x y z xyz = 1 / 2 1/2 ...... w w = A + B + C A+B+C where A A = a r c t a n arctan x , B B = a r c t a n arctan y , C C = a r c t a n arctan z ....... From above we can conclude that t a n A tanA = x , t a n B tanB = y , t a n C tanC = z ............. Now, t a n w tanw = t a n ( A + B + C tan (A+B+C ) i.e.[ t a n A tan A + t a n B tan B + t a n C tan C - t a n A tanA t a n B tanB t a n C tanC ] / / [ 1 ( t a n A 1- (tanA t a n B tanB + t a n B tanB t a n C tanC + t a n A tanA t a n C tanC ) ] .............. which is [ x + y + z x+y+z - x y z xyz ] / / [ 1 x y y z x z 1 - xy-yz-xz ]. { We had found the value of these expressions using vieta's formula. } =[ 799 / 2 799/2 - 1 / 2 1/2 ] / / [ 1 ( 200 ) 1-(-200) ] i.e. =[ 399 399 ] / / [ 201 201 ] = [ 133 133 ] / / [ 67 67 ] which is in the form a / b ^a/_b .............. Now, a + b a+b = 133 + 67 133+67 i.e. 200 200 .

Albert Pranata
Jul 22, 2013

Let tan 1 x = a , tan 1 y = b , tan 1 z = c \tan^{-1}x=a ,\tan^{-1}y=b ,\tan^{-1}z=c so that tan a = x , tan b = y , tan c = z \tan a=x ,\tan b=y ,\tan c=z . Then, we have ω = a + b + c \omega=a+b+c which equivalent with tan ω = tan ( a + b + c ) \tan\omega=\tan(a+b+c) . By using trigonometric identities, we get tan ( a + b + c ) = tan a + tan b + tan c tan a . tan b . tan c 1 ( tan a . tan b + tan b . tan c + tan c . tan a ) \tan(a+b+c)=\frac{\tan a+\tan b+\tan c-\tan a.\tan b.\tan c}{1-(\tan a.\tan b+\tan b.\tan c+\tan c.\tan a)} which equivalent with tan ω = x + y + z x y z 1 ( x y + y z + z x ) \tan\omega=\frac{x+y+z-xyz}{1-(xy+yz+zx)} Based on Vieta's Formula, we can conclude that x + y + z = 799 2 , x y + y z + z x = 200 , x y z = 1 2 x+y+z=\frac{799}{2},xy+yz+zx=-200,xyz=\frac{1}{2} Hence, we get tan ω = 799 2 1 2 1 + 200 = 399 201 = 133 67 \tan\omega=\frac{\frac{799}{2}-\frac{1}{2}}{1+200}=\frac{399}{201}=\frac{133}{67} We know that 133 133 and 67 67 are coprime which giving the answer a + b = 200 a+b=200 .

Daniel Chiu
Jul 21, 2013

We try to simplify the expression tan ( tan 1 x + tan 1 y + tan 1 z ) \tan(\tan^{-1}x+\tan^{-1}y+\tan^{-1}z) . Using tangent addition: tan ( tan 1 x + tan 1 y ) = x + y 1 x y \tan(\tan^{-1}x+\tan^{-1}y)=\dfrac{x+y}{1-xy} We can then say: tan ( tan 1 x + y 1 x y + tan 1 z ) = x + y 1 x y + z 1 z ( x + y ) 1 x y = x + y + z x y z 1 x y x z y z \tan(\tan^{-1}\dfrac{x+y}{1-xy}+\tan^{-1}z)=\dfrac{\dfrac{x+y}{1-xy}+z}{1-\dfrac{z(x+y)}{1-xy}}=\dfrac{x+y+z-xyz}{1-xy-xz-yz} Using Vieta, x + y + z = 799 2 x+y+z=\dfrac{799}{2} x y + x z + y z = 200 xy+xz+yz=-200 x y z = 1 2 xyz=\dfrac{1}{2} Now, our expression is equal to 799 2 1 2 1 + 200 = 399 201 = 133 67 \dfrac{\dfrac{799}{2}-\dfrac{1}{2}}{1+200}=\dfrac{399}{201}=\dfrac{133}{67} The answer is 133 + 67 = 200 133+67=\boxed{200} .

I like your solution the most because it is clear, explains everything (especially the trigonometric expression part) without being too nitpicky, and it is neatly written and clearly spaced.

Bob Krueger - 7 years, 10 months ago

Suppose p = tan 1 x , q = tan 1 y , r = tan 1 z p=\tan^{-1}x , q=\tan^{-1}y , r=\tan^{-1}z .

Therefore, tan ω = tan ( p + q + r ) \tan \omega=\tan(p+q+r)

= tan p + tan q + tan r tan p tan q tan r 1 ( tan p tan q + tan r tan p + tan q tan r ) \frac{\tan p +\tan q+\tan r - \tan p \tan q\tan r}{1-(\tan p \tan q+\tan r\tan p +\tan q\tan r) }

= x + y + z x y z 1 ( x y + y z + z x ) \frac{x+y+z-xyz}{1-(xy+yz+zx)} .

According to Vieta's Formulas: x + y + z = 799 2 , x y + y z + z x = 200 , x y z = 1 2 x+y+z=\frac{799}{2}, xy+yz+zx=-200, xyz=\frac{1}{2} , so tan ω = 799 2 1 2 1 ( 200 ) = 133 67 \tan \omega=\frac{\frac{799}{2}-\frac{1}{2}}{1-(-200)}=\frac{133}{67} .

The answer is: 133+67=200.

good job !

Xuan Hien Bui - 7 years, 10 months ago

We have, tanw

= tan( t a n 1 x tan^{-1}x + t a n 1 y tan^{-1}y + t a n 1 z tan^{-1}z )

=tan( tan^{-1} \(\frac{x+y+z-xyz}{1-xy-yz-zx} )

We know,

x + y + z = 799 2 \frac{799}{2}

xyz = 1

xy + yz + zx = -200

Putting successively we get,

= 399 201 \frac{399}{201}

= 133 67 \frac{133}{67}

So a+b = 67+133 = 200 (ans)

Moderator note:

Simple standard approach.

Shubham Kumar
Jul 27, 2013

By information in question, x + y + z = 799/2 , xy + yz + zx = -200 , xyz = 1/2 .............. (i)

w = tan^{-1}(x) + tan^{-1}(y) + tan^{-1}(z)

= tan^{-1}[(x+y)/(1-xy)] + tan^{-1}(z) ........... (Using inverse trigonometric identities)

= tan^{-1}[(x+y+z - xyz) / (1-(xy+yz+zx))]

Now, put values from (i) which gives

tan(w) = 399/201 = 133/67.

Clearly, a = 133, b = 67 and a + b = 200

Evan Chien
Jul 25, 2013

as we know arctan x+arctan y+arc tan z= arctan[x+y+z-xyz/(1-xy-yz-zx)]=w(given) =>tan w=[x+y+z-xyz/(1-xy-yz-zx)]...........(1) now given equation is 2u^3−799u^2−400u−1=0 as x y and z are= roots (as comparing coefficients with ax^3+bx^2+cx+d) =>sum of roots(-b/a) or x+y+z=799/2.........(2) sum of product of roots(c/a) or xy+yz+zx=-200...............(3) now product of roots(-d/a) or xyz=1/2...........(4) so put all values in (1) we get tan w=399/201 (as a and b are co prime) then tan w=133/67 a+b=133+67=200

Eric Edwards
Jul 25, 2013

We have that tan ( a + b + c ) = tan ( a ) + tan ( b ) + tan ( c ) tan ( a ) tan ( b ) tan ( c ) 1 ( tan ( a ) tan ( b ) + tan ( a ) tan ( c ) + tan ( b ) tan ( c ) ) \tan(a+b+c) = \frac{\tan(a)+\tan(b)+\tan(c) - \tan(a) \tan(b)\tan(c)}{1-(\tan(a)\tan(b)+\tan(a)\tan(c)+\tan(b)\tan(c))} , and by Vieta's Formulas, x + y + z = 799 2 x y z = 1 2 x y + x z + y z = 200 x+y+z = \frac{799}{2}\\ xyz = \frac{1}{2} \\ xy+xz+yz = -200

So, we have tan ( ω ) = 799 2 1 2 1 ( 200 ) = 133 67 \tan(\omega) = \frac{\frac{799}{2}-\frac{1}{2}}{1-(-200)} = \frac{133}{67} .

〖w= tan〗^(-1)⁡〖x +tan^(-1)⁡x+ tan^(-1)⁡z 〗

w =〖 tan〗^(-1)⁡〖(x+y)/(1-xy)〗+ tan^(-1)⁡z

w =〖 tan〗^(-1)⁡〖(x+y+z-xyz)/(1-(xy+yz+zx))〗

We know that x+y+z= 799/2

xy+yz+zx= (-400)/2= -200

xyz= 1/2

Putting these values, we get w = tan^(-1)⁡〖133/67〗

tan⁡〖w= 133/67〗= a/b

Therefore, a + b = 133 + 67 = 200

Anup Raj
Jul 24, 2013

By V i e t a s f o r m u l a Vieta's formula , we know that

x + y + z = 799 2 x + y + z = \frac {799}{2} ;

x y + y z + z x = 200 x \cdot y + y \cdot z + z \cdot x = -200 ;

x y z = 1 2 x \cdot y \cdot z = \frac {1}{2} ;

Now, suppose tan 1 x = p \tan^{-1} x = p , tan 1 y = q \tan^{-1} y = q and tan 1 z = r \tan^{-1} z = r .

tan p = x \Rightarrow \tan p = x , tan q = y \tan q = y and tan r = z \tan r = z .

Therefore, ω = tan 1 x + tan 1 y + tan 1 z = p + q + r \omega = \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = p + q + r ,

and

tan ω = tan ( p + q + r ) \tan \omega = \tan (p + q + r) .

In such cases where we have to use e x p a n d e d expanded form of tan ( θ 1 + θ 2 + θ 3 + θ n ) \tan (\theta_1 + \theta_2 + \theta_3 \ldots + \theta_n) , it is good to remember a formula derived:

tan ( θ 1 + θ 2 + θ 3 + θ n ) = S 1 S 3 + S 5 ± S n 1 S 2 + S 4 S n 1 \boxed {\tan (\theta_1 + \theta_2 + \theta_3 \ldots + \theta_n) = \frac {S_1 - S_3 + S_5 \ldots \pm S_n}{1 - S_2 + S_4 \ldots \mp S_{n-1}}}

where

S 1 S_1 = sum of tan of angles taken o n e one at a time = tan θ 1 + tan θ 2 + tan θ 3 + + tan θ n \tan \theta_1 + \tan \theta_2 + \tan \theta_3 + \ldots + \tan \theta_n

S 2 S_2 = sum of tan of angles taken t w o two at a time = tan θ 1 tan θ 2 + tan θ 2 tan θ 3 + \tan \theta_1 \cdot \tan \theta_2 + \tan \theta_2 \cdot \tan \theta_3 + \dots

and similarly, S 3 , S 4 S n S_3 , S_ 4 \ldots S_n .

, tan ω = ( tan p + tan q + tan r ) ( tan p tan q tan r ) 1 ( tan p tan q + tan q tan r + tan r tan p ) \Rightarrow, \tan \omega = \frac { (\tan p + \tan q + \tan r) - (\tan p \cdot \tan q \cdot \tan r)}{1 - (\tan p \cdot \tan q + \tan q \cdot \tan r + \tan r \cdot \tan p)} .

Therefore, tan ω = ( x + y + z ) ( x y z ) 1 ( x y + y z + z x ) = 799 2 1 2 1 ( 200 ) = 399 201 = 133 67 \tan \omega = \frac {(x + y + z) - (x \cdot y \cdot z)}{1 - (x \cdot y + y \cdot z + z \cdot x)} = \frac {\frac {799}{2} - \frac {1}{2}}{1 - (-200)} = \frac {399}{201} = \frac {133}{67}

Hence, tan ω = 133 67 = a b \tan \omega = \frac {133}{67} = \frac {a}{b}

a = 133 , b = 67 \Rightarrow \boxed {a = 133} , \boxed {b = 67} and a + b = 200 a + b = \boxed {200}

can you please tell me what the vieta's formula is? or post a link of it thanks

A Former Brilliant Member - 7 years, 10 months ago
Adrian Duong
Jul 24, 2013

Let α = tan 1 x , β = tan 1 y , γ = tan 1 z \alpha = \tan^{-1} x, \beta = \tan^{-1} y, \gamma = \tan^{-1} z . Then ω = α + β + γ \omega = \alpha + \beta + \gamma . tan ω = tan ( α + β + γ ) = tan α + tan ( β + γ ) 1 tan α tan ( β + γ ) = tan α + tan β + tan γ 1 tan β tan γ 1 tan α tan β + tan γ 1 tan β tan γ = tan α ( 1 tan β tan γ ) + tan β + tan γ 1 tan β tan γ tan α ( tan β + tan γ ) = x + y + z x y z 1 y z x y x z \begin{aligned} \tan \omega &= \tan(\alpha + \beta + \gamma) \\ &= \frac{\tan \alpha + \tan(\beta + \gamma)}{1 - \tan\alpha \tan(\beta + \gamma)} \\ &= \frac{\tan\alpha + \frac{\tan\beta + \tan\gamma}{1 - \tan\beta \tan\gamma}}{1 - \tan\alpha \frac{\tan\beta + \tan\gamma}{1 - \tan\beta \tan\gamma}} \\ &= \frac{\tan\alpha (1 - \tan\beta \tan\gamma) + \tan\beta + \tan\gamma}{1 - \tan\beta \tan\gamma - \tan\alpha(\tan \beta + \tan\gamma)} \\ &= \frac{x + y + z - xyz}{1 - yz - xy - xz} \end{aligned} Since x , y , z x,y,z are roots of 2 u 3 799 u 2 400 u 1 = 0 2u^3 - 799u^2 - 400u - 1 = 0 , 799 2 = x + y + z 200 = x y + x z + y z 1 2 = x y z \begin{aligned} \frac{799}{2} &= x + y + z\\ -200 &= xy + xz + yz \\ \frac{1}{2} &= xyz \end{aligned} Hence tan ω = 799 2 1 1 ( 200 ) = 133 67 \tan\omega = \frac{\frac{799}{2} - 1}{1 - (-200)} = \frac{133}{67}

Rindell Mabunga
Jul 24, 2013

Let A = arctan x , B = arctan y, and C = arctan z If arctan x = A, then x = tan A If arctan y = B, then y = tan B If arctan z = C, then z = tan C Therefore, tan w = tan (A + B + C) Further simplification using tangent formula gives, tan w = ((tan A + tan B + tan C) - (tan A)(tan B)(tan C))/(1 - (tan A + tan B) - (tan A + tan C) - (tan B + tan C)) which is equal to (x + y + z - xyz)/(1 - xy - xz - yz) or by Vieta's Theorem (799/2 - 1/2)/(1 - -400/2) = (798/2)/(402/2) = 399/201 = 133/67 Therefore a = 133 and b = 67 a + b = 133 + 67 = 200

Harrison Lian
Jul 23, 2013

We know that arctan ( x ) + arctan ( y ) + arctan ( z ) = arctan ( x + y 1 x y ) + arctan ( z ) \arctan(x)+\arctan(y)+\arctan(z)=\arctan(\frac{x+y}{1-xy})+\arctan(z) This is equal to arctan ( z + x + y 1 x y 1 z ( x + y ) 1 x y \arctan(\frac{z+\frac{x+y}{1-xy}}{1-\frac{z(x+y)}{1-xy}}

Simplifying, we get: ( 1 x y ) z + x + y 1 x y 1 x y z ( x + y x + y + z x y z 1 x y x z y z (1-xy)*\frac{z+\frac{x+y}{1-xy}}{1-xy-z(x+y} \Longrightarrow \frac{x+y+z-xyz}{1-xy-xz-yz} By Vieta's, we can substitute in the values: 799 / 2 1 / 2 1 ( 200 399 / 201 133 67 \frac{799/2-1/2}{1-(-200} \Longrightarrow {399/201} \Longrightarrow \frac{133}{67}
Therefore, the answer is 200 \boxed{200}

Harsa Mitra
Jul 23, 2013

For a polynomial ax^3 +bx^2 +cx+d=0 Adding the roots gives -b/a Here 799/2

Multiplying the roots gives -d/a Here,1/2

We also get xy+yz+zx = c/a Here it is,(-400/2)

So now using the inverse circular formula :-

omega=tan^(-1)[[x+y+z-(xyz)]/[1-(xy+yz+zx)]] Solving we get:- omega=tan^(-1)[133/67] Now, tan(omega)=133/67. Hence a+b=200

A small suggestion: writing your solution in LaTeX makes it more readable. Try practicing LaTeX. You'll get the hang of it in no time!

Refer to the formatting guide for instructions on how to use LaTeX.

Mursalin Habib - 7 years, 10 months ago
Takeda Shigenori
Jul 23, 2013

Using the addition formula, tan ( a + b + c ) = tan a + tan b + tan c tan a tan b tan c 1 ( tan a tan b + tan b tan c + tan c tan a ) \tan (a+b+c) = \frac{ \tan a + \tan b + \tan c -\tan a \tan b \tan c }{1-( \tan a \tan b + \tan b \tan c + \tan c \tan a )} . Since ω = tan 1 x + tan 1 y + tan 1 z ω= \tan ^{-1} x+ \tan ^{-1} y+ \tan ^{-1} z , let a = tan 1 x , b = tan 1 y , c = tan 1 z a= \tan ^{-1} x, b= \tan ^{-1} y, c= \tan ^{-1} z , x = tan a , y = tan b , z = tan c x= \tan a , y= \tan b , z= \tan c , therefore w = a + b + c w=a+b+c , tan w \tan w = tan ( a + b + c ) \tan (a+b+c) = tan a + tan b + tan c tan a tan b tan c 1 ( tan a tan b + tan b tan c + tan c tan a ) \frac{ \tan a + \tan b + \tan c -\tan a \tan b \tan c }{1-( \tan a \tan b + \tan b \tan c + \tan c \tan a )} = x + y + z x y z 1 ( x y + y z + z x ) \frac{x+y+z-xyz}{1-(xy+yz+zx)} . For a cubic equation a x 3 + b x 2 + c x + d = 0 ax^3+bx^2+cx+d=0 , the roots are denoted as α , β , γ \alpha , \beta , \gamma , then α + β + γ = b a \alpha + \beta + \gamma = -\frac{b}{a} , α β + β γ + γ α = c a \alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a} , and α β γ = d a \alpha \beta \gamma = -\frac{d}{a} . Since x, y and z are the real roots of 2 u 3 799 u 2 400 u 1 = 0 2u^3-799u^2-400u-1=0 , x + y + z = 799 2 = 799 2 x+y+z=-\frac{-799}{2}=\frac{799}{2} , x y + y z + z x = 400 2 = 200 xy+yz+zx=\frac{-400}{2}=-200 , x y z = 1 2 = 1 2 xyz=-\frac{-1}{2}=\frac{1}{2} . Therefore, tan w = 799 2 1 2 1 ( 200 ) = 399 201 = 133 67 , 133 + 67 = 200 \tan w = \frac{ \frac{799}{2} - \frac{1}{2}}{1-(-200)} = \frac{399}{201} = \frac{133}{67} , 133+67=200 .

D7 Sharma
Jul 22, 2013

as we know arctan x+arctan y+arc tan z= arctan[x+y+z-xyz/(1-xy-yz-zx)]=w(given) =>tan w=[x+y+z-xyz/(1-xy-yz-zx)]...........(1) now given equation is 2u^3−799u^2−400u−1=0 as x y and z are= roots (as comparing coefficients with ax^3+bx^2+cx+d) =>sum of roots(-b/a) or x+y+z=799/2.........(2) sum of product of roots(c/a) or xy+yz+zx=-200...............(3) now product of roots(-d/a) or xyz=1/2...........(4) so put all values in (1) we get tan w=399/201 (as a and b are co prime) then tan w=133/67 a+b=133+67=200

For simplicity of notation let's denote tan 1 x = a , tan 1 y = b , tan 1 z = c \tan^{-1}x = a, \tan^{-1}y = b, \tan^{-1}z = c . The tangent of w is the tangent of the sum of three arcs.

Since tan ( k + l ) = tan k + tan l 1 tan k tan l \tan (k + l) = \frac {\tan k + \tan l}{1 - \tan k * \tan l} we get tan w = tan a + tan b + tan c 1 tan b tan c 1 tan a tan b + tan c 1 tan b tan c \tan w = \frac{\tan a + \frac{\tan b + \tan c}{1 - \tan b * \tan c}}{1 - \tan a * \frac{\tan b + \tan c}{1 - \tan b * \tan c}} Rearranging, we get tan w = tan a + tan b + tan c ( tan a tan b tan c ) 1 ( tan a tan b + tan a tan c + tan b tan c ) \tan w = \frac{\tan a + \tan b + \tan c - (\tan a * \tan b * \tan c)}{1 - (\tan a * \tan b + \tan a * \tan c + \tan b * \tan c)} , which is the sum of the roots minus the product of the roots, all divided by one minus the product two by two of the roots, since tan ( tan 1 x ) = x \tan (\tan^{-1} x) = x

Looking at the equation we have s u m = ( 799 ) / 2 = 799 / 2 , p r o d u c t = ( 1 ) / 2 = 1 / 2 , p r o d u c t 2 b y 2 = 400 / 2 sum = - (-799)/2 = 799/2, product = - (-1)/2 = 1/2, product_{2 by 2} = -400/2 so tan w = 133 / 67 \tan w = 133/67 .

The answer is 133 + 67 = 200

Let a=tan^-1 x, b= tan^-1 y and c= tan^-1 z so tan a=x, tan b=y and tan c=z tan (a+b)=\frac {tan a + tan b}{1-tan a tan b} tan (a+b)=\frac {x+y}{1-xy} tan ω= tan (a+b+c)= \frac {tan (a+b)+tan c}{1-tan (a+b) tan c} tan ω=\frac {\frac {x+y}{1-xy}+z} {1- \frac {x+y}{1-xy} *z}=\frac {x+y+z-xyz}{1-(xy+xz+yz)} Vieta's Formula x+y+z=799/2, xy+xz+yz=-200, xyz=1/2 then tan ω=\frac {133}{67} and the answer is 133+67=\underline{200}

Ganesh Sundaram
Jul 22, 2013

If x , y , z x, y, z are solutions of u 3 + a u 2 + b u + c = 0 u^3 + a u^2 + b u + c = 0 , then, ( u x ) ( u y ) ( u z ) = u 3 + a u 2 + b u + c = 0 , (u-x)(u-y)(u-z) = u^3 + a u^2 + b u + c = 0, implies, x + y + z = a , x y + y z + z x = b , x y z = c . x+y+z = -a, \quad xy+yz+zx = b, \quad xyz = c. Together with the identity tan ( p + q + r ) = tan p + tan q + tan r tan p tan q tan r 1 ( tan p tan q + tan q tan r + tan r tan p ) \tan(p+q+r) = \frac{\tan p + \tan q + \tan r - \tan p \tan q \tan r}{1 - (\tan p \tan q + \tan q \tan r + \tan r \tan p)} applied to tan ω \tan \omega gives the answer.

Roy Zhao
Jul 22, 2013

We use the tangent sum of angles formula.

tan ω = tan ( tan 1 x + tan 1 y + tan 1 z ) = tan tan 1 x + tan ( tan 1 y + tan 1 z ) 1 tan tan 1 x tan ( tan 1 y + tan 1 z ) \tan{\omega}=\tan(\tan^{-1}x+\tan^{-1}y+\tan^{-1}z)\\=\dfrac{\tan\tan^{-1}x+\tan(\tan^{-1}y+\tan^{-1}z)}{1-\tan\tan^{-1}x\cdot\tan(\tan^{-1}y+\tan^{-1}z)}

tan ( tan 1 y + tan 1 z ) = y + z 1 y z \tan(\tan^{-1}y+\tan^{-1}z)=\dfrac{y+z}{1-yz} and so tan ω = x + y + z 1 y z 1 x y + z 1 y z = x + y + z x y z 1 ( x y + x z + y z ) \tan\omega=\dfrac{x+\dfrac{y+z}{1-yz}}{1-x\cdot\dfrac{y+z}{1-yz}}=\dfrac{x+y+z-xyz}{1-(xy+xz+yz)}

Since x , y , z x, y, z are the solutions to the cubic, using Viete's gives x + y + z = 799 2 , x y + x z + y z = 400 2 = 200 , x y z = 1 2 x+y+z=\dfrac{799}{2}, xy+xz+yz=\dfrac{-400}{2}=-200, xyz=\dfrac{1}{2} and substituting those in give:

tan ω = 799 2 1 2 1 ( 200 ) = 399 201 = 133 67 \tan\omega=\dfrac{\dfrac{799}{2}-\dfrac{1}{2}}{1-(-200)}=\dfrac{399}{201}=\dfrac{133}{67} and thus a + b = 133 + 67 = 200 a+b=133+67=\boxed{200}

Oscar Harmon
Jul 22, 2013

tan ( a + b + c ) = tan a + tan b + tan c 1 tan a tan b 1 tan a tan b + tan c 1 tan b tan c = x + y + z 1 y z 1 x y + z 1 y z = ( x + y + z ) x y z 1 ( x y + x z + y z ) = 799 2 ( 1 2 ) 1 400 2 = 133 67 \tan (a+b+c) = \frac{\tan a + \frac{\tan b + \tan c}{1 - \tan a \tan b}}{1- \tan a \frac{\tan b + \tan c}{1 - \tan b \tan c}} = \frac{x + \frac{y+z}{1-yz}}{1-x\frac{y+z}{1-yz}} = \frac{(x+y+z)-xyz}{1-(xy+xz+yz)} = \frac{-\frac{-799}{2}-(-\frac{-1}{2})}{1-\frac{-400}{2}} = \frac{133}{67}

Thus, a + b = 133 + 67 = 200 a+b=133+67=200

Kunal Singh
Jul 22, 2013

As x , y and z are the roots of the given equation which is of the form

f ( u ) = au ^3 + bu ^2 + cu + d , we have

x + y + z = \frac{- b }{ a } = -\frac{-799}{2} = \frac{799}{2} ....eq\bigcrc{1}

xy + yz + zx = \frac{ c }{ a } = \frac{-400}{2} = -200 ....eq\bigcirc{2}

xyz = \frac{- d }{ a } = -\frac{-1}{2} = \frac{1}{2} ....eq\bigcirc{3}

Applying the identity tan^{-1} x + tan^{-1} y = tan^{-1}{\frac{ x + y }{1 - xy } twice for \omega , we get

\omega = tan^{-1}\frac{ x + y + z - xyz }{1 - ( xy + yz + zx )}

Substituting eq\bigcirc{1} , eq\bigcirc{2} and eq\bigcirc{3} in the above equation , we get

\omega = \frac{399}{201} , but the numerator and denominator should be coprime . Therefore , \frac{a}{b} = \frac{133}{67} . Hence , a + b = 200

Jerry Hermanto
Jul 22, 2013

For every real numbers a , b , c a,b,c we know that
tan ( a + b + c ) = tan ( a ) + tan ( b + c ) 1 tan ( a ) tan ( b + c ) \tan(a+b+c)=\frac{\tan(a)+\tan(b+c)}{1-\tan(a)\tan(b+c)}
= tan a + tan b + tan c 1 tan b tan c 1 tan a tan b + tan c 1 tan b tan c =\frac{\tan a+\frac{\tan b + \tan c}{1-\tan b\tan c}}{1-\tan a\frac{\tan b + \tan c}{1-\tan b\tan c}}
= tan a tan b tan c + tan a + tan b + tan c 1 tan a tan b tan b tan c tan a tan c = \frac{-\tan a\tan b\tan c + \tan a + \tan b + \tan c}{1- \tan a\tan b - \tan b\tan c - \tan a\tan c}
Since x , y , z x,y,z are real numbers, we can set a = tan 1 x , b = tan 1 y , c = t a n 1 z a=\tan^{-1} x, b=\tan^{-1} y, c=tan^{-1} z
In other words, x = tan a , y = tan y , z = t a n c x=\tan a, y=\tan y, z=tan c
By Vieta's formula, we get
x + y + z = tan a + tan b + tan c = 799 2 x+y+z = \tan a + \tan b + \tan c = \frac{799}{2}
x y + x z + y z = tan a tan b + tan b tan c + tan a tan c = 200 xy+xz+yz = \tan a\tan b + \tan b\tan c + \tan a\tan c = -200
x y z = tan a tan b tan c = 1 2 xyz = \tan a\tan b\tan c = \frac{1}{2}
We have proved that tan ( a + b + c ) = tan a tan b tan c + tan a + tan b + tan c 1 tan a tan b tan b tan c tan a tan c \tan(a+b+c) = \frac{-\tan a\tan b\tan c + \tan a + \tan b + \tan c}{1- \tan a\tan b - \tan b\tan c - \tan a\tan c}
By substituting the value of tan a + tan b + tan c , tan a tan b + tan b tan c + tan a tan c , tan a tan b tan c \tan a + \tan b + \tan c, \tan a\tan b + \tan b\tan c + \tan a\tan c, \tan a\tan b\tan c we get
tan ( a + b + c ) = 1 2 + 799 2 1 + 200 = 133 67 \tan(a+b+c)= \frac{-\frac{1}{2}+\frac{799}{2}}{1+200}= \frac{133}{67}
Note that tan ω = tan ( a + b + c ) = 133 67 \tan \omega = \tan(a+b+c) = \frac{133}{67}
Therefore, the value of a + b a+b is 133 + 67 = 200 133+67 = 200













Zi Song Yeoh
Jul 22, 2013

Using the formula for t a n ( A + B + C ) tan(A + B + C) . (See here . ), we get t a n ( ω ) = x + y + z x y z 1 ( x y + y z + x z ) tan(\omega) = \frac{x + y + z - xyz}{1 - (xy + yz + xz)} . By Vieta's formula, x + y + z = 399.5 , x y z = 0.5 , x y + y z + x z = 200 x + y + z = 399.5, xyz = 0.5, xy + yz + xz = 200 . Substituting gives the answer 133 67 \frac{133}{67} . So, a + b = 200 a + b = 200 .

Mayank Kaushik
Jul 22, 2013

we know tan 1 x + tan 1 y = tan 1 x + y 1 x y \tan^{-1} x +\tan^{-1} y = \tan^{-1} \frac{x + y}{1-xy}

so tan ω = x + y + z x y z 1 x y x z y z \tan ω = \frac{x + y + z - xyz}{1 - xy - xz - yz}

Also ( u x ) ( u y ) ( u z ) = u 3 ( x + y + z ) u 2 + ( x y + y z + z x ) u ( x y z ) (u-x)(u-y)(u-z) = u^{3} - (x+y+z)u^{2} + (xy + yz + zx)u - (xyz)

so x + y + z = 799 2 , x y z = 1 2 , x y + y z + z x = 200 x + y + z = \frac{799}{2} , xyz = \frac{1}{2} , xy +yz +zx = -200

tan ω = 133 67 \tan ω = \frac{133}{67}

Tanishq Aggarwal
Jul 21, 2013

The sum of tangents identity gives us tan ( α + β ) = tan α + tan β 1 tan α tan β \tan(\alpha+\beta)=\frac{\tan \alpha + \tan \beta}{1-\tan \alpha \tan \beta} . By letting α = tan 1 x \alpha=\tan ^{-1} x and β = tan 1 y \beta = \tan ^{-1} y , we obtain tan 1 x + tan 1 y = tan 1 ( x + y 1 x y ) \tan^{-1}x+\tan^{-1}y=\tan^{-1}(\frac{x+y}{1-xy}) . (This identity derived here: https://brilliant.org/discussions/thread/trigometry-paradox/) By applying this identity twice to the value of w w , we obtain w = tan 1 ( x + y 1 x y + z 1 ( x + y 1 x y z ) ) w=\tan^{-1}(\frac{\frac{x+y}{1-xy}+z}{1-(\frac{x+y}{1-xy}z)}) Multiplying the numerator and the denominator of the complex fraction by 1 x y 1-xy we obtain w = tan 1 ( x + y + z x y z 1 x y x z y z ) w=\tan^{-1}(\frac{x+y+z-xyz}{1-xy-xz-yz}) Denoting the k k th symmetric sum of the given roots as δ k \delta_k , we see that tan w = δ 1 δ 3 1 δ 2 \tan w = \frac{\delta_1 - \delta_3}{1 - \delta_2} . By Vieta, the previous easily evaluates to tan w = 799 2 1 2 1 400 2 = 399 201 = 133 67 \tan w = \frac{\frac{799}{2} - \frac{1}{2}}{1 - \frac{-400}{2}}=\frac{399}{201}=\frac{133}{67} . The sum of the numerator and the denominator is 200 \boxed{200} .

Benson Li
Jul 21, 2013

Lets first start off with finding an expression for tan ω \tan \omega in terms of x , y , z x,y,z . Using the tangent addition formula for just t a n 1 ( x ) + t a n 1 ( y ) tan^{-1}(x)+tan^{-1}(y) , we get ( x + y ) / ( 1 y x ) (x+y)/(1-yx) . Now, using the tangent addition formula again with tan 1 ( z ) \tan^{-1}(z) and the sum of t a n 1 ( x ) + t a n 1 ( y ) tan^{-1}(x)+tan^{-1}(y) as the arguments, we get ( x + y + z x y z ) / ( 1 ( x y + y z + x z ) (x+y+z-xyz)/(1-(xy+yz+xz) . We know from Vieta's Formula that x + y + z = 799 / 2 x+y+z=799/2 , x y + y z + x z = 200 xy+yz+xz=-200 , and x y z = 1 / 2 xyz=1/2 . Substituting these numbers into the derived formula, we get 133 / 67 133/67 . Their sum is 133 + 67 = 200 133+67=200

Daniel Viana
Jul 21, 2013

We know,by addition formulaes,that: ( t g ( a ) + t g ( b ) + t g ( c ) t g ( a ) t g ( b ) t g ( c ) ) / ( 1 ( t g ( a ) t g ( b ) + t g ( a ) t g ( c ) + t g ( b ) t g ( c ) ) (tg(a)+tg(b)+tg(c)-tg(a)tg(b)tg(c))/(1-(tg(a)tg(b)+tg(a)tg(c)+tg(b)tg(c))

So as tg(a)+tg(b)+tg(c)=799/2

tg(a)tg(b)tg(c)=1/2

and tg(a)tg(b)+tg(a)tg(c)+tg(b)tg(c)=400/2

By the Girard's theorem we have

t g ( w ) = 133 / 67 tg(w)=133/67

Ricardo Alencar
Jul 21, 2013

Using Vieta's Formula we'll get to 3 equations: $$ S 1 = \frac{799}{2}, S 2 = -200, S 3 = P = \frac{1}{2} $$ Knowing that tan ( arctan ( x ) ) = x \tan(\arctan(x)) = x and calling arctan ( x ) = α \arctan(x) = \alpha , arctan ( y ) = β \arctan(y) = \beta , arctan ( z ) = γ \arctan(z) = \gamma we'll just need to calculate tan ( α + β + γ ) \tan(\alpha + \beta + \gamma) : $$ \tan(\alpha + \beta + \gamma) = \frac{\tan(\alpha + \beta) + z}{1 - \tan(\alpha + \beta)\cdot z} $$ Calculating again: $$ \tan(\alpha + \beta + \gamma) = \frac{x + y + z - xyz}{1 - xy - xz - yz} $$ Which is clearly: $$ \frac{S 1 - P}{1 - S_2} = \frac{399}{201} = \frac{133}{67} $$ So, a + b = 133 + 67 = 200 a + b = 133 + 67 = 200

Call the left-hand side of the equation ρ ( u ) \rho(u) and notice that ω \omega is the angle of the complex number

2 ( 1 + i x ) ( 1 + i y ) ( 1 + i z ) 2(1+ix)(1+iy)(1+iz)

= 2 i ( i x ) ( i y ) ( i z ) =2i(i-x)(i-y)(i-z)

= i ρ ( i ) = i\rho(i)

= i ( 2 i + 799 400 i 1 ) =i(-2i+799-400i-1)

= 402 + 798 i =402+798i

Therefore, tan ω = 798 402 = 133 67 \omega = \frac {798}{402} = \frac {133}{67} and a + b = 133 + 67 = 200 a+b=133+67=200 .

Note: Depending on the definition used for arctan, ω \omega might be the angle of i ρ ( i ) -i\rho(i) rather than i ρ ( i ) i\rho(i) . But that won't alter the value of tan ω \omega .

Peter Byers - 7 years, 10 months ago

but it has only one real root and other two are complex i.e. 599.50,-0.028880i and 0.028880i

Neeraj Gupta - 7 years, 10 months ago

Neeraj, there are three real roots. What makes you say that?

Alon Amit - 7 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...