Russianal expressions 2015

Algebra Level 3

The result of evaluating ( x 3 1 x + 1 x x 3 + 1 ( x + 1 ) 2 x ( x 1 ) 2 + x ( 1 1 x ) ) 1 2 \displaystyle\left ( \dfrac{\dfrac{x^{3}-1}{x+1}\cdot\dfrac{x}{x^{3}+1}}{\dfrac{(x+1)^{2}-x}{(x-1)^{2}+x}\cdot\left (1-\dfrac{1}{x}\right )} \right )^{\dfrac{-1}{2}} at x = 2015 x = 2015 can be represented in the form a b \displaystyle\dfrac{a}{b} , where a and b only share the factor 1. What is a + b a+b ?


The answer is 4031.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 16, 2015

( x 3 1 x + 1 ˙ x x 3 + 1 ( x + 1 ) 2 x ( x 1 ) 2 + x ˙ ( 1 1 x ) ) 1 2 = ( ( x 1 ) ( x 2 + x + 1 ) x ( x + 1 ) ( x + 1 ) ( x 2 x + 1 ) x 2 + 2 x + 1 x x 2 2 x + 1 + x ˙ x 1 x ) 1 2 \displaystyle \left(\frac{\frac{x^3-1}{x+1}\dot{}\frac{x}{x^3+1}}{\frac{(x+1)^2-x}{(x-1)^2+x}\dot{}\left( 1-\frac{1}{x} \right)} \right)^{-\frac{1}{2}} = \left( \frac {\frac{(x-1)(x^2+x+1)x}{(x+1)(x+1)(x^2-x+1)}}{\frac{x^2+2x+1-x}{x^2-2x+1+x}\dot{}\frac{x-1}{x}} \right)^{-\frac{1}{2}}

= ( x ( x 1 ) ( x 2 + x + 1 ) ( x + 1 ) 2 ( x 2 x + 1 ) ( x 1 ) ( x 2 + x + 1 ) x ( x 2 x + 1 ) ) 1 2 = ( x ( x 1 ) ( x 2 + x + 1 ) ( x + 1 ) 2 ( x 2 x + 1 ) ˙ x ( x 2 x + 1 ) ( x 1 ) ( x 2 + x + 1 ) ) 1 2 \displaystyle = \left( \frac {\frac{x(x-1)(x^2+x+1)}{(x+1)^2(x^2-x+1)}}{\frac{(x-1)(x^2+x+1)}{x(x^2-x+1)}} \right)^{-\frac{1}{2}} = \left( \frac{x(x-1)(x^2+x+1)}{(x+1)^2(x^2-x+1)}\dot{} \frac{x(x^2-x+1)} {(x-1)(x^2+x+1)} \right)^{-\frac{1}{2}}

= ( x 2 ( x + 1 ) 2 ) 1 2 = ( x + 1 ) 2 x 2 = x + 1 x = 2016 2015 = \left( \dfrac {x^2}{(x+1)^2}\right)^{-\frac{1}{2}} = \sqrt{\dfrac {(x+1)^2}{x^2}}= \dfrac {x+1}{x} = \dfrac {2016}{2015}

a + b = 2016 + 2015 = 4031 \Rightarrow a + b = 2016+2015 = \boxed{4031}

Well done! You did the exact way I did.

Hobart Pao - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...