Russianal Limits

Calculus Level 1

If L = lim x 0 x 2 + 201 4 2 2014 x 2 + 201 5 2 2015 L=\displaystyle \lim_{x \rightarrow 0} \frac{\sqrt{x^{2} + 2014^{2}}-2014}{\sqrt{x^2+2015^{2}}-2015} , and L L can be represented in the form a b \dfrac{a}{b} , find a b a-b . Ensure that a a and b b are relatively prime.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

lim x 0 x 2 + 201 4 2 2014 x 2 + 201 5 2 2015 ( x 2 + 201 4 2 + 2014 ) ( x 2 + 201 5 2 + 2015 ) ( x 2 + 201 4 2 + 2014 ) ( x 2 + 201 5 2 + 2015 ) \displaystyle\lim_{x\to 0}\frac{\sqrt{x^{2}+2014^{2}}-2014}{\sqrt{x^{2}+2015^{2}}-2015}\cdot \frac{(\sqrt{x^{2}+2014^{2}}+2014)(\sqrt{x^{2}+2015^{2}}+2015)}{(\sqrt{x^{2}+2014^{2}}+2014)(\sqrt{x^{2}+2015^{2}}+2015)} = lim x 0 x 2 ( x 2 + 201 5 2 + 2015 ) x 2 ( x 2 + 201 4 2 + 2014 ) =\displaystyle\lim_{x\to 0}\frac{x^{2}(\sqrt{x^{2}+2015^{2}}+2015)}{x^{2}(\sqrt{x^{2}+2014^{2}}+2014)} = 2015 2014 =\dfrac{2015}{2014}

Exactly what I did.

Hobart Pao - 5 years, 8 months ago
Micah Wood
Nov 24, 2015

For any m , n > 0 m,n>0 , we can evaluate general limit lim x 0 x 2 + m 2 m x 2 + n 2 n \displaystyle \lim_{x\to0}\dfrac{\sqrt{x^2+m^2}-m}{\sqrt{x^2+n^2}-n} . We can apply L'Hopital's Rule here: = lim x 0 ( x 2 + m 2 ) 1 2 m ( x 2 + n 2 ) 1 2 n = lim x 0 1 2 ( x 2 + m 2 ) 1 2 2 x 1 2 ( x 2 + n 2 ) 1 2 2 x = lim x 0 ( x 2 + m 2 ) 1 2 ( x 2 + n 2 ) 1 2 = ( 0 2 + m 2 ) 1 2 ( 0 2 + n 2 ) 1 2 = ( m 2 ) 1 2 ( n 2 ) 1 2 = 1 / m 1 / n = n m \begin{aligned} ~\cdots = \lim_{x\to0}\dfrac{(x^2+m^2)^{\frac12}-m}{(x^2+n^2)^{\frac12}-n}&=~\lim_{x\to0}\dfrac{\frac12(x^2+m^2)^{-\frac12}\cdot2x}{\frac12(x^2+n^2)^{-\frac12}\cdot2x} \\~\\ &=~\lim_{x\to0}\dfrac{(x^2+m^2)^{-\frac12}}{(x^2+n^2)^{-\frac12}} \\~\\ &=~\dfrac{(0^2+m^2)^{-\frac12}}{(0^2+n^2)^{-\frac12}} \\~\\ &=~\dfrac{(m^2)^{-\frac12}}{(n^2)^{-\frac12}}\\~\\ &=~\dfrac{1/m}{1/n} \\~\\ &=~\dfrac n m \end{aligned}

Here, we have m = 2014 m = 2014 and n = 2015 n=2015 , so limit is 2015 2014 \dfrac{2015}{2014} , hence our answer is 2015 2014 = 1 2015 - 2014 = \boxed1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...