Ryan's function composition

Algebra Level 4

If f ( x ) = x 1 x f(x)= \frac {x-1}{x} and g ( x ) = 3 x + 1 3 9 x g(x)= \frac {3x+1}{3-9x} , what is the value of

k = 1 2520 ( f k ( 2 ) g k ( 2 ) ) ? \displaystyle \sum_{k=1}^{2520} \left(f^{k}(2)-g^{k}(2) \right)?

This problem is posed by Ryan P .

Details and assumptions

Note: f k ( x ) f^{k}(x) denotes the composition of the function k k times. For example, f 2 ( x ) = f ( f ( x ) ) f^2(x) = f(f(x)) .


The answer is 179.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Jan J.
Sep 9, 2013

It is matter of simple algebraic manipulation to find that

f ( x ) = x 1 x , f 2 ( x ) = 1 1 x , f 3 ( x ) = x f(x) = \frac{x - 1}{x}, f^2(x) = \frac{1}{1 - x},f^3(x) = x

g ( x ) = 3 x + 1 3 9 x , g 2 ( x ) = 1 9 x , g 3 ( x ) = 3 x 1 9 x + 3 , g 4 ( x ) = x g(x) = \frac{3x + 1}{3 - 9x}, g^2(x) = -\frac{1}{9x}, g^3(x) = \frac{3x - 1}{9x + 3}, g^4(x) = x

Now for any k N k \in \mathbb{N} and a { 0 , 1 , 2 } a \in \{0,1,2\} we get f 3 k + a ( x ) = f a ( f 3 k ( x ) ) = f a ( x ) f^{3k + a}(x) = f^a\left(f^{3k}(x)\right) = f^a(x) which follows by simple induction (or intuition). Similarly for any k N k \in \mathbb{N} and a { 0 , 1 , 2 , 3 } a \in \{0,1,2,3\} we get f 4 k + a ( x ) = f a ( f 4 k ( x ) ) = f a ( x ) f^{4k + a}(x) = f^a\left(f^{4k}(x)\right) = f^a(x) Now note that 2520 3 = 840 \frac{2520}{3} = 840 and 2520 4 = 630 \frac{2520}{4} = 630 . Hence $$\sum_{k = 1}^{2520} \Big(f^k(2) - g^k(2)\Big) = 840\left(f(2) + f^2(2) + 2\right) - 630\left(g(2) + g^2(2) + g^3(2) + 2\right)$$ Simply computing each of f ( 2 ) , f 2 ( 2 ) , g ( 2 ) , g 2 ( 2 ) , g 3 ( 2 ) f(2), f^2(2), g(2), g^2(2), g^3(2) we get k = 1 2520 ( f k ( 2 ) g k ( 2 ) ) = 840 ( 1 2 1 + 2 ) 630 ( 7 15 + 1 18 + 5 21 + 2 ) = 179 \begin{aligned} \sum_{k = 1}^{2520} \Big(f^k(2) - g^k(2)\Big) &= 840\left(\frac{1}{2} - 1 + 2\right) - 630\left(\frac{-7}{15} + \frac{-1}{18} + \frac{5}{21} + 2 \right) \\ &= \boxed{179} \end{aligned}

Moderator note:

Great job!

Pi Han Goh
Sep 8, 2013

f ( x ) = x 1 x = 1 1 x f(x) = \frac {x-1}{x} = 1 - \frac {1}{x}

f 2 ( x ) = 1 1 1 1 x = 1 x x 1 = 1 x 1 f^2 (x) = 1 - \frac {1}{1 - \frac {1}{x}} = 1 - \frac {x}{x-1} = - \frac {1}{x-1}

f 3 ( x ) = 1 1 1 x 1 = 1 + x 1 = x f^3 (x) = 1 - \frac {1}{- \frac {1}{x-1} } = 1 + x - 1 = x

f 4 ( x ) = x f^4 (x) = x

Since f 4 ( x ) = f ( x ) f^4 (x) = f(x) , f n ( x ) f^n (x) has a period of 3 3 , that is f n ( x ) = f n ( m o d 3 ) ( x ) f^n (x) = f^{n \pmod 3 } (x)

f ( 2 ) = f 4 ( x ) = f 7 ( 2 ) = = f 2518 ( 2 ) = 1 2 f(2) = f^4 (x) = f^7 (2) = \ldots = f^{2518} (2) = \frac {1}{2} , total of 840 of them

f 2 ( 2 ) = f 5 ( 2 ) = f 8 ( 2 ) = = f 2519 ( 2 ) = 1 f^2 (2) = f^5 (2) = f^8 (2) = \ldots = f^{2519} (2) = -1 , total of 840 of them

f 3 ( 2 ) = f 6 ( 2 ) = f 9 ( 2 ) = = f 2520 ( 2 ) = 2 f^3(2) = f^6 (2) = f^9 (2) = \ldots = f^{2520} (2) = 2 , total of 840 of them

k = 1 2520 f k ( 2 ) = 840 ( 1 2 1 + 2 ) = 1260 \Rightarrow \displaystyle \sum_{k=1}^{2520} f^k (2) = 840(\frac {1}{2} - 1 + 2) = 1260

Similarly, g 2 ( x ) = 3 ( 3 x + 1 3 9 x ) + 1 3 9 ( 3 x + 1 3 9 x ) = 1 9 x g^2(x) = \frac {3 (\frac {3x+1}{3-9x}) + 1 }{3 - 9 (\frac {3x+1}{3-9x}) } = - \frac {1}{9x}

g 3 ( x ) = 3 ( 1 9 x ) + 1 3 9 ( 1 9 x ) = 3 + 9 x 27 x + 9 g^3(x) = \frac {3 ( - \frac {1}{9x} ) + 1 }{3 - 9 ( - \frac {1}{9x} ) } = \frac {-3+9x}{27x+9}

g 4 ( x ) = g 2 ( g 2 ( x ) ) = 1 9 ( 1 9 x ) = x g^4 (x) = g^2 (g^2 (x)) = - \frac {1}{9 (- \frac {1}{9x} ) } = x

g 5 ( x ) = x = g ( x ) g^5 (x) = x = g(x)

g ( 2 ) = g 5 ( 2 ) = g 9 ( 2 ) = = g 2517 ( 2 ) = 7 15 g(2) = g^5 (2) = g^9 (2) = \ldots = g^{2517} (2) = - \frac {7}{15} , total of 630 of them

g 2 ( 2 ) = g 6 ( 2 ) = g 10 ( 2 ) = = g 2518 ( 2 ) = 1 18 g^2(2) = g^6 (2) = g^{10} (2) = \ldots = g^{2518} (2) = - \frac {1}{18} , total of 630 of them

g 3 ( 2 ) = g 7 ( 2 ) = g 11 ( 2 ) = = g 2519 ( 2 ) = 5 21 g^3(2) = g^7 (2) = g^{11} (2) = \ldots = g^{2519} (2) = \frac {5}{21} , total of 630 of them

g 4 ( 2 ) = g 8 ( 2 ) = g 12 ( 2 ) = = g 2520 ( 2 ) = 2 g^4(2) = g^8 (2) = g^{12} (2) = \ldots = g^{2520} (2) = 2 , total of 630 of them

k = 1 2520 g k ( 2 ) = 630 ( 7 15 1 18 + 5 21 + 2 ) = 1081 \Rightarrow \displaystyle \sum_{k=1}^{2520} g^k (2) = 630(- \frac {7}{15} - \frac {1}{18} + \frac {5}{21} + 2) = 1081

Answer is 1260 1081 = 179 1260 - 1081 = \boxed{179}

Moderator note:

Great job!

Great job! This actually shows that instead of 2 2 any other number would also lead to similar periodic patterns.

Alexander Borisov - 7 years, 9 months ago

Log in to reply

Thanks!

typo: " f 4 ( x ) = f ( x ) f^4 (x) = f(x) " and " g 5 ( x ) = g ( x ) g^5 (x) = g(x) "

Pi Han Goh - 7 years, 9 months ago
Michael Tong
Sep 8, 2013

It is easy to check these functions for periodicity when evaluated at 2 2 , and we find that they are. Namely,

f ( 2 ) = 1 2 , f 2 ( 2 ) = 1 , f 3 ( 2 ) = 2 , f 4 ( 2 ) = 1 2 f(2) = \frac {1}{2}, f^2(2) = -1, f^3(2) = 2, f^4(2) = \frac{1}{2} \cdots

g ( 2 ) = 7 15 , g 2 ( 2 ) = 1 18 , g 3 ( 2 ) = 5 21 , g 4 ( 2 ) = 2 , g 5 ( 2 ) = 7 15 g(2) = -\frac {7}{15}, g^2(2) = -\frac {1}{18}, g^3(2) = \frac {5}{21}, g^4(2) = 2, g^5(2) = -\frac{7}{15} \cdots

Thus, k = 1 2520 f k ( 2 ) = ( 2520 3 ) ( 1 2 1 + 2 ) = 1260 \sum_{k = 1}^{2520} f^k(2) = (\frac{2520}{3})(\frac{1}{2} - 1 + 2) = 1260 and k = 1 2520 g k ( 2 ) = ( 2520 4 ) ( 7 15 1 18 + 5 21 + 2 ) = 1081 \sum_{k = 1}^{2520} g^k(2) = (\frac{2520}{4})(-\frac{7}{15} - \frac{1}{18} + \frac {5}{21} + 2) = 1081

So the desired answer is 1260 1081 179 1260 - 1081 \rightarrow 179 .

Moderator note:

Nicely done!

I DID THE SAME . EXACTLY

SHASHANK GOEL - 7 years, 9 months ago
Oliver Welsh
Sep 9, 2013

If we calculate f ( 2 ) f(2) , we get that:

f ( 2 ) = 2 1 2 = 1 2 f(2) = \frac{2-1}2 = \frac12 f 2 ( 2 ) = 1 2 1 1 2 = 1 f^2(2) = \frac{\frac12 - 1}{\frac12} = -1 f 3 ( 2 ) = 1 1 1 = 2 f^3(2) = \frac{-1-1}{-1} = 2

Therefore, there is a repeating pattern of 2 , 0.5 , 1 2, 0.5, -1 . We can see that 2520 3 = 840 \frac{2520}{3} = 840 , so the value of:

k = 1 2520 f k ( 2 ) = 840 ( 2 + 0.5 1 ) = 1260 \displaystyle \sum_{k=1}^{2520}{f^k(2)} = 840 \cdot (2 + 0.5 -1) = 1260

Following the same process with g ( 2 ) g(2) , we can see another repeating pattern, this time with the numbers 2 , 7 15 , 1 18 , 5 21 2, -\frac7{15}, -\frac1{18}, \frac5{21} . We can see that 2520 4 = 630 \frac{2520}4 = 630 so the value of:

k = 1 2520 g k ( 2 ) = 630 ( 2 7 15 1 18 + 5 21 ) = 1081 \displaystyle \sum_{k=1}^{2520}{g^k(2)} = 630 \cdot (2-\frac7{15}-\frac1{18}+\frac5{21}) = 1081 .

Therefore, we can see that the value of:

k = 1 2520 ( f k ( 2 ) g k ( 2 ) ) = 1260 1081 = 179 \displaystyle \sum_{k=1}^{2520}{(f^k(2)-g^k(2))} = 1260 - 1081 = \fbox{179}

Well done!

Alexander Borisov - 7 years, 9 months ago
Tanishq Aggarwal
Sep 13, 2013

By inspection, it eventually becomes clear that f n ( x ) = { x 1 x , n 1 ( m o d 3 ) 1 1 x , n 2 ( m o d 3 ) x , n 0 ( m o d 3 ) f^n(x)=\begin{cases} \frac{x-1}{x}, & n \equiv 1 \pmod 3 \\ \frac{1}{1-x}, & n \equiv 2 \pmod 3 \\ x, & n \equiv 0 \pmod 3 \end{cases} and g n ( x ) = { 3 x + 1 3 9 x , n 1 ( m o d 4 ) 1 9 x , n 2 ( m o d 4 ) 3 x 1 9 x + 3 , n 3 ( m o d 4 ) x , n 0 ( m o d 4 ) g^n(x)=\begin{cases} \frac{3x+1}{3-9x}, & n \equiv 1 \pmod 4 \\ \frac{-1}{9x}, & n \equiv 2 \pmod 4 \\ \frac{3x-1}{9x+3}, & n \equiv 3 \pmod 4 \\ x, & n \equiv 0 \pmod 4 \\ \end{cases} Breaking up the given sum, we have ( k = 1 2520 f k ( 2 ) ) ( k = 1 2520 g k ( 2 ) ) \left ( \sum_{k=1}^{2520} {f^k(2)} \right ) - \left ( \sum_{k=1}^{2520} {g^k(2)} \right ) ( 2520 3 ) ( 1 2 + 1 2 + 2 ) ( 2520 4 ) ( 7 15 + 1 18 + 5 21 + 2 ) (\frac{2520}{3})(\frac{1}{2}+\frac{-1}{2}+2)-(\frac{2520}{4})(\frac{-7}{15}+\frac{-1}{18}+\frac{5}{21}+2) The above simplifies to 179 \boxed{179} .

Ruslan Abdulgani
Sep 9, 2013

We can solve the problem by looking at the repeating patterns of the functions and its compositions. f(x)= (x-1)/x, f^2 (x) = -1/(x-1), f^3 (x) = x, f^4 (x) = f(x), f^5 (x) = f^2 (x),... etc.It is repeating after 3 steps.So f(2) = 1/2, f^2 (2) = -1, f^3(2) = 2.So the total sum will be 3/2 (2520/3) = 1260. For the function of g(x) and its compositions, it is repeating after 4 steps, namely, g(x) = (3x+1)/(3-9x), g^2 (x) = -1/(9x), g^3(x) = (3x-1)/(3+9x), and g^4(x) = x,...etc.So total sum of g(x) and its compositions evaluated at x=2, are (-7/15 + (-1/18) + (5/21) + 2) (2520/4) = 1081 So Their total difference is 1260 - 1081 = 179

f ( x ) = x 1 x , f 2 ( x ) = 1 x 1 , f 3 ( x ) = x f(x)={x-1 \over x}, f^2(x) = {-1 \over x-1 }, f^3(x) = x .

We also have:

g ( x ) = 1 3 3 x + 1 3 x 1 , g 2 ( x ) = 1 3 1 3 x , g 3 ( x ) = 1 3 3 x 1 3 x + 1 , g 4 ( x ) = x g(x) = -{1 \over 3}{3x+1 \over 3x - 1}, g^2(x) = -{1 \over 3}{1 \over 3x}, g^3(x) = {1 \over 3}{3x-1 \over 3x + 1}, g^4(x) = x

So, The required sum is:

2520 3 ( f ( x ) + f 2 ( x ) + f 3 ( x ) ) 2520 4 ( g ( x ) + g 2 ( x ) + g 3 ( x ) + g 4 ( x ) ) {2520 \over 3}\left(f(x) + f^2(x) + f^3(x)\right) - {2520 \over 4}\left(g(x) + g^2(x) + g^3(x) + g^4(x)\right)

Substituting x = 2 x=2 in the above, it results in 179 179 .

Nicely done!

Alexander Borisov - 7 years, 9 months ago
Hs N
Sep 9, 2013

A calculation that is slightly too tedious to write down here tells us that f 4 ( x ) = 1 x f^4(x)=\frac{1}{x} and that g 4 ( x ) = x g^4(x)=x . This tells us that g g repeats itself every four terms, i.e. g 5 = g , g 6 = g 2 g^5=g, g^6=g^2 , etc. We may also see that after the third iteration, f f becomes 3 3 -repetitive and concerning the outcome when we fill in 2 2 , it even is 3-repetitive from the start. As a result, we may split the sum to give 2520 3 ( sum of each three succesive terms of f ) \frac{2520}{3}\cdot(\text{sum of each three succesive terms of }f)-

2520 4 ( sum of each four succesive terms of g ) = \frac{2520}{4}\cdot(\text{sum of each four succesive terms of }g) =

2520 3 ( 1 + 2 + 1 2 ) 2520 4 ( 2 + 5 21 7 15 1 18 ) = \frac{2520}{3}\cdot(-1+2+\frac{1}{2}) - \frac{2520}{4}\cdot(2+\frac{5}{21}-\frac{7}{15}-\frac{1}{18}) =

2520 3 3 2 2520 4 1260 + 150 294 35 630 = \frac{2520}{3}\cdot\frac{3}{2}-\frac{2520}{4}\cdot\frac{1260+150-294-35}{630} =

1260 1260 150 + 294 + 35 = 179. 1260 - 1260 -150 + 294 + 35 = 179.

Nicely done! It will actually be repetitive from the start for any value of x x as long as all fractions are defined. Indeed, these are Mobius transformations, so they are invertible (in fact, explicitly so, by f 2 f^2 and g 3 g^3 ).

Alexander Borisov - 7 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...