Given that sin ( 2 θ ) = 3 2 , the value of
sin 6 θ + cos 6 θ
can be written as b a with a and b coprime positive integers. Find a + b .
This problem is posed by Ryan P.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
\( \sin^2 2\theta = \frac {2}{3} \Rightarrow \cos^2 2\theta = 1 - \sin^2 2\theta \Rightarrow \cos^2 2\theta = 1 - \frac {4}{9} \Rightarrow \cos 2\theta = \frac {\sqrt{5}}{3}
Since \cos 2\theta = 2\cos^\theta - 1 \Rightarrow 2\cos^2 \theta = \frac {\sqrt{5}}{3} + 1 \Rightarrow \cos^2 \theta = \frac {3 + \sqrt{5}}{6} ........(1) \Rightarrow \sin^2 \theta = \frac {3 - \sqrt{5}}{6} ........(2)
from Equations 1 and 2 we have, \cos^6 \theta + \sin^6 \theta = (\frac {3 + \sqrt{5}}{6})^3 + (\frac {3 - \sqrt{5}}{6})^3 = \frac {3^3 + 3^2\cdot\sqrt{5} + 3\cdot(\sqrt{5})^2 + (\sqrt{5})^3 + 3^3 - 3^2\cdot\sqrt{5} + 3\cdot(\sqrt{5})^2 - (\sqrt{5})^3}{6^3} =\frac {27 + 15 + 27 + 15}{216} = \frac {7}{18}
So a = 7 , b = 18 \Rightarrow a + b = 25.
Can, please someone find me the error.. :(
\)
Let n = sin^6 (θ) + cos^6 (θ). After looking at it, you will realize that it is a sum of two cubes.
n = [sin^2 (θ)]^3 + [cos^2 (θ)]^3
Thus, it can be factored into this:
n = [sin^2 (θ) + cos^2 (θ)]*[sin^4 (θ) +cos^4 (θ) -cos^2 (θ) sin^2 (θ)]
n = [1]*[sin^4 (θ) +cos^4 (θ) -cos^2 (θ) sin^2 (θ)]
n = sin^4 (θ) +cos^4 (θ) -cos^2 (θ) sin^2 (θ)
After completing the square we get,
n = [sin^2 (θ) + cos^2 (θ)]^2 -3cos^2 (θ) sin^2 (θ)
n = 1^2 - 3cos^2 (θ) sin^2 (θ)
n = 1 - 3cos^2 (θ) sin^2 (θ)
(Equation 1)
From the given, sin 2θ = 2sinθcosθ = 2/3
Thus, sinθcosθ = 1/3.
Squaring both sides and multiplying each by 3 we get,
3sin^2 (θ) cos^2 (θ) = 1/3.
(Equation 2)
Substituting Equation 2 into Equation 1,
n = 1 - 1/3
n = 2/3
Thus, a+b = 2+3 = 5
This is an example of a clearly written solution, explaining the logic behind the formulas. Some of the submitted solutions contained (almost) no words. This may be fine, and even desirable, at some levels of studying mathematics, but you should learn to write with clear logic, which does mean including appropriate number of words, in complete and logical sentences.
We have, \sin \2theta = \frac {2}{3}
or, 2 \sin \theta \cos \theta = \frac {2}{3}
or, \sin \theta \cos \theta = \frac {1}{3} ..... (i)
Now, (\sin \theta)^6 + (\cos \theta)^6
= [(\sin \theta)^2]^3 + [(\cos \theta)^2]^3
= [(\sin \theta)^2 + (\cos \theta)^2]^3 - 3 \times [(\sin \theta)^2(\cos \theta)^2] \times [(\sin \theta)^2 + (\cos \theta)^2]
=1^3 - 3 \times (\sin \theta \cos \theta)^2 \times 1
=1- 3 \times \frac {1}{3} \times 1
=1 - \frac {1}{3}
= \frac {2}{3}
So, our answer is 2+3 = 5.
Given sin θ = 3 2
We get sin θ cos θ = 3 1
Then sin 6 θ + cos 6 θ = ( sin 3 θ + cos 3 θ ) 2 − 2 sin 3 θ cos 3 θ = [ ( sin 2 θ + cos 2 θ ) ( sin θ + cos θ ) − ( sin θ cos θ ) ( sin θ + cos θ ) ] 2 − 2 sin 3 θ cos 3 θ = [ 3 2 ( sin θ + cos θ ) ] 2 − 2 ( sin θ cos θ ) 3 = 9 4 ( 1 + 3 2 ) − 2 7 2 = 9 4 + 2 7 8 − 2 7 2 = 2 7 1 8 = 3 2 = b a
Hence, a + b = 2 + 3 = 5
As we can see: $$ (a^3 + b^3) = (a + b)(a^2 - ab + b^2) $$ and: $$ (a^2 + b^2) = (a + b)^2 - 2ab $$ Thus: $$ (a^3 + b^3) = (a + b)( (a+ b)^2 - 3ab) $$ using a and b as: $$ a = \sin^2 \theta \ and \ b = \cos^2\theta $$ then $$ (\sin^6\theta + \cos^6\theta) = (\sin^2\theta + \cos^2\theta)((\sin^2\theta + \cos^2\theta) - 3\cdot\sin^2\theta\cos^2\theta) $$ Now, knowing that $$ \sin^2\theta + \cos^2\theta = 1 $$ and $$ 2\sin\theta\cos\theta = \sin(2\theta) $$ Hence: $$ (\sin^6\theta + \cos^6\theta) = 1\cdot(1 - \frac{3}{4}\sin^2(2\theta)) $$ Since: $$ \sin^2(2\theta) = \frac{2}{3} $$ We finally came to a conclusion: $$ (\sin^6\theta + \cos^6\theta) = 1 - \frac{3}{4}\cdot\frac{4}{9} = 1 - \frac{1}{3} = \frac{2}{3} = \frac{a}{b} $$ Solution: $$ a + b = 5 $$
i want to know why in the quadqratic equation the vertix come by (-b/2a , f(-b/2a) )
From sin ( 2 θ ) = 3 2 , we deduce - sin ( 2 θ ) = 2 sin θ cos θ = 3 2 ⇒ sin θ cos θ = 3 1
Now solving for sin 6 θ + cos 6 θ , we get - sin 6 θ + cos 6 θ = ( sin 2 θ ) 3 + ( cos 2 θ ) 3
⇒ ( sin 2 θ + cos 2 θ ) ⋅ ( sin 4 θ + cos 4 θ − sin 2 θ cos 2 θ )
By using sin 2 θ + cos 2 θ = 1 , we get -
⇒ ( sin 4 θ + cos 4 θ − sin 2 θ cos 2 θ )
⇒ ( ( sin 4 θ + cos 4 θ + 2 sin 2 θ cos 2 θ ) − 3 sin 2 θ cos 2 θ )
⇒ ( sin 2 θ + cos 2 θ ) 2 − 3 sin 2 θ cos 2 θ
Again by using sin 2 θ + cos 2 θ = 1 we get -
⇒ 1 − 3 sin 2 θ cos 2 θ
But we have already calculated the value of sin θ cos θ i.e 3 1 , so -
⇒ 1 − 3 ( 3 1 ) 2
⇒ 1 − 3 1
⇒ 3 2
Therefore , sin 6 θ + cos 6 θ = b a = 3 2
Hence , a + b = 5
sin 2theta = 2/3 = 2sin theta cos theta,or sin theta cos theta = 1/3 ( sin^2 theta + cos^2 theta)^3=1 sin^6 theta + cos^6 theta + 3sin^2theta cos^2theta(sin^2 theta + cos^2 theta)=1 sin^6 theta + cos^6 theta + 3(sin theta cos theta)^2(1)=1 sin^6 theta + cos^6 theta + 3 (1/3)^2=1 sin^6 theta + cos^6 theta +3 1/9=1 sin^6 theta + cos^6 theta +1/3=1 sin^6 theta + cos^6 theta =1-1/3 sin^6 theta + cos^6 theta =2/3 therefore 2+3 =5(answer)
we know that, \sin\theta^6 + \cos\theta^6 = (\sin\theta^2)^3 + (\cos\theta^2)^3 = (\sin\theta^2 + \cos\theta^2)(\sin\theta^4 + \cos\theta^4 - \sin\theta^2\cos\theta^2) = 1(\sin\theta^2 + \cos\theta^2)^2 - 2\sin\theta^2\cos\theta^2) - \sin\theta^2\cos\theta^2) = (1 - 3\sin\theta^2\cos\theta^2) = (1 - 4\sin\theta^2\cos\theta^2 + \sin\theta^2\cos\theta^2 Multiplying and dividing throughout by 4, = (4 - 16\sin\theta^2\cos\theta^2 + 4\sin\theta^2\cos\theta^2)\times1/4 = {4 - 4[(\sin\2theta)^2] + (\sin\2theta)^2}\times1/4 = (4 - 4(4/9) + 4/9)\times1/4 = (4 - 16/9 + 4/9)\times1/4 = (24/9)\times1/4 = 2/3 Ans: 2/3
sin^{6}θ+cos^{6}θ=\frac {a}{b} We know, sin2θ=2sinθ*cosθ and sin^{2}θ+cos^{2}θ=1
(1-cos^{2}θ)^{3}+cos^{6}θ=\frac {a}{b} [(a-b)^{3}=a^3-b^3-3ab(a-b)] or (1-cos^{6}θ-(3 cos^{2}θ (1-cos^{2}θ)) +cos^{6}θ=\frac {a}{b} or 1-(3 cos^{2}θ (1-cos^{2}θ))=\frac {a}{b} or 1-(3 cos^{2}θ sin^{2}θ)=\frac {a}{b} or 1-(.75 (2cosθ sinθ)^{2})=\frac {a}{b} or 1-(.75 (sin2θ)^{2})=\frac {a}{b} or 1-(3/4 2/3*2/3)=\frac {a}{b} or 1-(1/3)=\frac {a}{b} or 2/3=\frac {a}{b}
Therefore, a=2 and b=3 so, a+b=5
s i n ( 2 θ ) = 3 2
Using the double angle formula, which states that s i n ( 2 θ ) = 2 s i n ( θ ) c o s ( θ ) , we get 2 s i n ( θ ) c o s ( θ ) = 3 2 ------> s i n ( θ ) c o s ( θ ) = 3 1
Squaring this, we get s i n 2 ( θ ) c o s 2 ( θ ) = 9 1 … … … … [ 1 ]
The pythagorean identity states that s i n 2 ( θ ) + c o s 2 ( θ ) = 1 . Squaring both sides, we get s i n 4 ( θ ) + c o s 4 ( θ ) + 2 s i n 2 ( θ ) c o s 2 ( θ ) = 1
Substitute 2 × [ 1 ] into 2 s i n 2 ( θ ) c o s 2 ( θ ) , so s i n 4 ( θ ) + c o s 4 ( θ ) = 9 7
Multiply the equations s i n 2 ( θ ) + c o s 2 ( θ ) = 1 and s i n 4 ( θ ) + c o s 4 ( θ ) = 9 7 to get
s i n 6 ( θ ) + c o s 6 ( θ ) + s i n 4 ( θ ) c o s 2 ( θ ) + c o s 4 ( θ ) s i n 2 ( θ ) = 9 7
Note that s i n 4 ( θ ) c o s 2 ( θ ) + c o s 4 ( θ ) s i n 2 ( θ ) can be factorised to ( s i n 2 ( θ ) c o s 2 ( θ ) ) × ( s i n 2 ( θ ) + c o s 2 ( θ ) )
s i n 2 ( θ ) c o s 2 ( θ ) = 9 1 as of [1] and s i n 2 ( θ ) + c o s 2 ( θ ) = 1
Therefore, s i n 6 ( θ ) + c o s 6 ( θ ) + 9 1 = 9 7 = 9 6 = 3 2
Then the answer is 2 + 3 = 5
I hope you guys find it helpful.
Problem Loading...
Note Loading...
Set Loading...
We are Given s i n 2 θ = 3 2
⇒ 2 s i n θ c o s θ = 3 2
⇒ s i n θ c o s θ = 3 1
Now we may write s i n 6 θ as ( s i n 2 θ ) 3 and c o s 6 θ as ( c o s 2 θ ) 3 .
Now applying Identity A 3 + B 3 = ( A + B ) 3 − 3 A B ( A + B ) , we have:
( s i n 2 θ ) 3 + ( c o s 2 θ ) 3 = ( s i n 2 θ + c o s 2 θ ) 3 − 3 s i n 2 θ c o s 2 θ ( s i n 2 θ + c o s 2 θ )
But we know that ( s i n 2 θ + c o s 2 θ ) = 1
So the above expression reduces to:
( 1 ) 3 − 3 ( s i n 2 θ c o s 2 θ ) ( 1 )
But we deduced above that s i n θ c o s θ = 3 1
⇒ s i n 2 θ c o s 2 θ = 9 1
So on substituting and solving we get s i n 6 θ + c o s 6 θ = 3 2
So a + b = 2 + 3 = 5