Ryan's Sines and Cosines

Algebra Level 3

Given that sin ( 2 θ ) = 2 3 \sin (2\theta) =\frac{2}{3} , the value of

sin 6 θ + cos 6 θ {\sin^6 \theta}+{\cos^6 \theta}

can be written as a b \frac{a}{b} with a a and b b coprime positive integers. Find a + b a+b .

This problem is posed by Ryan P.


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

11 solutions

Ashu Tayal
May 20, 2014

We are Given s i n 2 θ sin2 \theta = 2 3 \frac {2}{3}

\Rightarrow 2 s i n θ c o s θ sin \theta cos \theta = 2 3 \frac {2}{3}

\Rightarrow s i n θ c o s θ sin \theta cos \theta = 1 3 \frac {1}{3}

Now we may write s i n 6 θ sin^6 \theta as ( s i n 2 θ ) 3 (sin^2 \theta)^3 and c o s 6 θ cos^6 \theta as ( c o s 2 θ ) 3 (cos^2 \theta)^3 .

Now applying Identity A 3 + B 3 = ( A + B ) 3 3 A B ( A + B ) A^3 + B^3 = (A+B)^3 - 3AB(A+B) , we have:

( s i n 2 θ ) 3 (sin^2 \theta)^3 + ( c o s 2 θ ) 3 (cos^2 \theta)^3 = ( s i n 2 θ + c o s 2 θ ) 3 3 s i n 2 θ c o s 2 θ ( s i n 2 θ + c o s 2 θ ) (sin^2 \theta + cos^2 \theta)^3 - 3sin^2 \theta cos^2 \theta (sin^2 \theta + cos^2 \theta)

But we know that ( s i n 2 θ + c o s 2 θ ) = 1 (sin^2 \theta + cos^2 \theta) = 1

So the above expression reduces to:

( 1 ) 3 3 ( s i n 2 θ c o s 2 θ ) ( 1 ) (1)^3-3(sin^2 \theta cos^2 \theta)(1)

But we deduced above that s i n θ c o s θ sin \theta cos \theta = 1 3 \frac {1}{3}

\Rightarrow s i n 2 θ c o s 2 θ sin^2 \theta cos^2 \theta = 1 9 \frac {1}{9}

So on substituting and solving we get s i n 6 θ + c o s 6 θ = 2 3 sin^6 \theta + cos^6\theta = \frac {2}{3}

So a + b = 2 + 3 = 5 a+b = 2+3 = 5

\( \sin^2 2\theta = \frac {2}{3} \Rightarrow \cos^2 2\theta = 1 - \sin^2 2\theta \Rightarrow \cos^2 2\theta = 1 - \frac {4}{9} \Rightarrow \cos 2\theta = \frac {\sqrt{5}}{3}

Since \cos 2\theta = 2\cos^\theta - 1 \Rightarrow 2\cos^2 \theta = \frac {\sqrt{5}}{3} + 1 \Rightarrow \cos^2 \theta = \frac {3 + \sqrt{5}}{6} ........(1) \Rightarrow \sin^2 \theta = \frac {3 - \sqrt{5}}{6} ........(2)

from Equations 1 and 2 we have, \cos^6 \theta + \sin^6 \theta = (\frac {3 + \sqrt{5}}{6})^3 + (\frac {3 - \sqrt{5}}{6})^3 = \frac {3^3 + 3^2\cdot\sqrt{5} + 3\cdot(\sqrt{5})^2 + (\sqrt{5})^3 + 3^3 - 3^2\cdot\sqrt{5} + 3\cdot(\sqrt{5})^2 - (\sqrt{5})^3}{6^3} =\frac {27 + 15 + 27 + 15}{216} = \frac {7}{18}

So a = 7 , b = 18 \Rightarrow a + b = 25.

Can, please someone find me the error.. :(

\)

Gunjan Sheth - 4 years, 8 months ago
Leandre Noel Kiu
May 20, 2014

Let n = sin^6 (θ) + cos^6 (θ). After looking at it, you will realize that it is a sum of two cubes.

n = [sin^2 (θ)]^3 + [cos^2 (θ)]^3

Thus, it can be factored into this:

n = [sin^2 (θ) + cos^2 (θ)]*[sin^4 (θ) +cos^4 (θ) -cos^2 (θ) sin^2 (θ)]

n = [1]*[sin^4 (θ) +cos^4 (θ) -cos^2 (θ) sin^2 (θ)]

n = sin^4 (θ) +cos^4 (θ) -cos^2 (θ) sin^2 (θ)

After completing the square we get,

n = [sin^2 (θ) + cos^2 (θ)]^2 -3cos^2 (θ) sin^2 (θ)

n = 1^2 - 3cos^2 (θ) sin^2 (θ)

n = 1 - 3cos^2 (θ) sin^2 (θ)

(Equation 1)

From the given, sin 2θ = 2sinθcosθ = 2/3

Thus, sinθcosθ = 1/3.

Squaring both sides and multiplying each by 3 we get,

3sin^2 (θ) cos^2 (θ) = 1/3.

(Equation 2)

Substituting Equation 2 into Equation 1,

n = 1 - 1/3

n = 2/3

Thus, a+b = 2+3 = 5

This is an example of a clearly written solution, explaining the logic behind the formulas. Some of the submitted solutions contained (almost) no words. This may be fine, and even desirable, at some levels of studying mathematics, but you should learn to write with clear logic, which does mean including appropriate number of words, in complete and logical sentences.

Calvin Lin Staff - 7 years ago
Sagnik Saha
May 20, 2014

We have, \sin \2theta = \frac {2}{3}

or, 2 \sin \theta \cos \theta = \frac {2}{3}

or, \sin \theta \cos \theta = \frac {1}{3} ..... (i)

Now, (\sin \theta)^6 + (\cos \theta)^6

= [(\sin \theta)^2]^3 + [(\cos \theta)^2]^3

= [(\sin \theta)^2 + (\cos \theta)^2]^3 - 3 \times [(\sin \theta)^2(\cos \theta)^2] \times [(\sin \theta)^2 + (\cos \theta)^2]

=1^3 - 3 \times (\sin \theta \cos \theta)^2 \times 1

=1- 3 \times \frac {1}{3} \times 1

=1 - \frac {1}{3}

= \frac {2}{3}

So, our answer is 2+3 = 5.

Chin Fong Wong
May 20, 2014

Given sin θ = 2 3 \sin \theta = \frac {2}{3}

We get sin θ cos θ = 1 3 \sin \theta \cos \theta= \frac {1}{3}

Then sin 6 θ + cos 6 θ \sin^6 \theta + \cos^6 \theta = ( sin 3 θ + cos 3 θ ) 2 2 sin 3 θ cos 3 θ = (\sin^3 \theta + \cos^3 \theta )^2 - 2 \sin^3 \theta \cos^3 \theta = [ ( sin 2 θ + cos 2 θ ) ( sin θ + cos θ ) ( sin θ cos θ ) ( sin θ + cos θ ) ] 2 2 sin 3 θ cos 3 θ = [(\sin^2 \theta + \cos^2 \theta )( \sin \theta + \cos \theta ) - (\sin \theta \cos \theta )( \sin \theta + \cos \theta )]^2 - 2 \sin^3 \theta \cos^3 \theta = [ 2 3 ( sin θ + cos θ ) ] 2 2 ( sin θ cos θ ) 3 = [ \frac {2}{3} (\sin \theta + \cos \theta)]^2 - 2(\sin \theta \cos \theta)^3 = 4 9 ( 1 + 2 3 ) 2 27 = \frac {4}{9} (1 + \frac {2}{3}) - \frac {2}{27} = 4 9 + 8 27 2 27 = \frac {4}{9} + \frac {8}{27} - \frac {2}{27} = 18 27 = 2 3 = a b = \frac {18}{27} = \frac {2}{3} = \frac {a}{b}

Hence, a + b = 2 + 3 = 5 a + b = 2 + 3 =5

Ricardo Alencar
May 20, 2014

As we can see: $$ (a^3 + b^3) = (a + b)(a^2 - ab + b^2) $$ and: $$ (a^2 + b^2) = (a + b)^2 - 2ab $$ Thus: $$ (a^3 + b^3) = (a + b)( (a+ b)^2 - 3ab) $$ using a and b as: $$ a = \sin^2 \theta \ and \ b = \cos^2\theta $$ then $$ (\sin^6\theta + \cos^6\theta) = (\sin^2\theta + \cos^2\theta)((\sin^2\theta + \cos^2\theta) - 3\cdot\sin^2\theta\cos^2\theta) $$ Now, knowing that $$ \sin^2\theta + \cos^2\theta = 1 $$ and $$ 2\sin\theta\cos\theta = \sin(2\theta) $$ Hence: $$ (\sin^6\theta + \cos^6\theta) = 1\cdot(1 - \frac{3}{4}\sin^2(2\theta)) $$ Since: $$ \sin^2(2\theta) = \frac{2}{3} $$ We finally came to a conclusion: $$ (\sin^6\theta + \cos^6\theta) = 1 - \frac{3}{4}\cdot\frac{4}{9} = 1 - \frac{1}{3} = \frac{2}{3} = \frac{a}{b} $$ Solution: $$ a + b = 5 $$

i want to know why in the quadqratic equation the vertix come by (-b/2a , f(-b/2a) )

Mohamed Attia - 5 years, 9 months ago
Kishlaya Jaiswal
May 20, 2014

From sin ( 2 θ ) = 2 3 \sin(2\theta) = \frac {2} {3} , we deduce - sin ( 2 θ ) = 2 sin θ cos θ = 2 3 \sin(2\theta) = 2 \sin \theta \cos \theta = \frac {2} {3} sin θ cos θ = 1 3 \Rightarrow \sin \theta \cos \theta = \frac {1} {3}

Now solving for sin 6 θ + cos 6 θ \sin^6 \theta + \cos^6 \theta , we get - sin 6 θ + cos 6 θ = ( sin 2 θ ) 3 + ( cos 2 θ ) 3 \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta)^3 + (\cos^2 \theta)^3

( sin 2 θ + cos 2 θ ) ( sin 4 θ + cos 4 θ sin 2 θ cos 2 θ ) \Rightarrow(\sin^2 \theta + \cos^2 \theta)\cdot(\sin^4 \theta + \cos^4 \theta - \sin^2 \theta\cos^2 \theta)

By using sin 2 θ + cos 2 θ = 1 \sin^2 \theta + \cos^2 \theta = 1 , we get -

( sin 4 θ + cos 4 θ sin 2 θ cos 2 θ ) \Rightarrow(\sin^4 \theta + \cos^4 \theta - \sin^2 \theta\cos^2 \theta)

( ( sin 4 θ + cos 4 θ + 2 sin 2 θ cos 2 θ ) 3 sin 2 θ cos 2 θ ) \Rightarrow((\sin^4 \theta + \cos^4 \theta + 2\sin^2 \theta\cos^2 \theta) - 3\sin^2 \theta\cos^2 \theta)

( sin 2 θ + cos 2 θ ) 2 3 sin 2 θ cos 2 θ \Rightarrow (\sin^2 \theta + \cos^2 \theta)^2 - 3\sin^2 \theta \cos^2 \theta

Again by using sin 2 θ + cos 2 θ = 1 \sin^2 \theta + \cos^2 \theta = 1 we get -

1 3 sin 2 θ cos 2 θ \Rightarrow 1 - 3\sin^2 \theta \cos^2 \theta

But we have already calculated the value of sin θ cos θ \sin \theta\cos \theta i.e 1 3 \frac {1} {3} , so -

1 3 ( 1 3 ) 2 \Rightarrow 1 - 3(\frac {1} {3})^2

1 1 3 \Rightarrow 1 - \frac {1} {3}

2 3 \Rightarrow \frac {2} {3}

Therefore , sin 6 θ + cos 6 θ = a b = 2 3 \sin^6 \theta + \cos^6 \theta = \frac {a} {b} = \frac {2} {3}

Hence , a + b = 5 a + b = 5

Correct solution, with incorrect notation (\Rightarrow is often used in place of equality)

Calvin Lin Staff - 7 years ago
Anirudh Chauhan
May 20, 2014

sin 2theta = 2/3 = 2sin theta cos theta,or sin theta cos theta = 1/3 ( sin^2 theta + cos^2 theta)^3=1 sin^6 theta + cos^6 theta + 3sin^2theta cos^2theta(sin^2 theta + cos^2 theta)=1 sin^6 theta + cos^6 theta + 3(sin theta cos theta)^2(1)=1 sin^6 theta + cos^6 theta + 3 (1/3)^2=1 sin^6 theta + cos^6 theta +3 1/9=1 sin^6 theta + cos^6 theta +1/3=1 sin^6 theta + cos^6 theta =1-1/3 sin^6 theta + cos^6 theta =2/3 therefore 2+3 =5(answer)

The logic is not explained well: words are missing. But a correct solution.

Calvin Lin Staff - 7 years ago
Aditya Madhavan
May 20, 2014

we know that, \sin\theta^6 + \cos\theta^6 = (\sin\theta^2)^3 + (\cos\theta^2)^3 = (\sin\theta^2 + \cos\theta^2)(\sin\theta^4 + \cos\theta^4 - \sin\theta^2\cos\theta^2) = 1(\sin\theta^2 + \cos\theta^2)^2 - 2\sin\theta^2\cos\theta^2) - \sin\theta^2\cos\theta^2) = (1 - 3\sin\theta^2\cos\theta^2) = (1 - 4\sin\theta^2\cos\theta^2 + \sin\theta^2\cos\theta^2 Multiplying and dividing throughout by 4, = (4 - 16\sin\theta^2\cos\theta^2 + 4\sin\theta^2\cos\theta^2)\times1/4 = {4 - 4[(\sin\2theta)^2] + (\sin\2theta)^2}\times1/4 = (4 - 4(4/9) + 4/9)\times1/4 = (4 - 16/9 + 4/9)\times1/4 = (24/9)\times1/4 = 2/3 Ans: 2/3

Unduly complicated near the end, but correct

Calvin Lin Staff - 7 years ago
Adnan Azmat
May 20, 2014

sin^{6}θ+cos^{6}θ=\frac {a}{b} We know, sin2θ=2sinθ*cosθ and sin^{2}θ+cos^{2}θ=1

(1-cos^{2}θ)^{3}+cos^{6}θ=\frac {a}{b} [(a-b)^{3}=a^3-b^3-3ab(a-b)] or (1-cos^{6}θ-(3 cos^{2}θ (1-cos^{2}θ)) +cos^{6}θ=\frac {a}{b} or 1-(3 cos^{2}θ (1-cos^{2}θ))=\frac {a}{b} or 1-(3 cos^{2}θ sin^{2}θ)=\frac {a}{b} or 1-(.75 (2cosθ sinθ)^{2})=\frac {a}{b} or 1-(.75 (sin2θ)^{2})=\frac {a}{b} or 1-(3/4 2/3*2/3)=\frac {a}{b} or 1-(1/3)=\frac {a}{b} or 2/3=\frac {a}{b}

Therefore, a=2 and b=3 so, a+b=5

Rather hard too read, but correct (modulo occasional bad notation )

Calvin Lin Staff - 7 years ago
Ken Gene Quah
Jul 26, 2016

s i n ( 2 θ ) = 2 3 sin(2\theta) = \frac{2}{3}

Using the double angle formula, which states that s i n ( 2 θ ) = 2 s i n ( θ ) c o s ( θ ) sin(2\theta) = 2sin(\theta)cos(\theta) , we get 2 s i n ( θ ) c o s ( θ ) = 2 3 2sin(\theta)cos(\theta) = \frac{2}{3} ------> s i n ( θ ) c o s ( θ ) = 1 3 sin(\theta)cos(\theta) = \frac{1}{3}

Squaring this, we get s i n 2 ( θ ) c o s 2 ( θ ) = 1 9 [ 1 ] sin^2(\theta)cos^2(\theta) = \frac{1}{9} \dots \dots \dots \dots [1]

The pythagorean identity states that s i n 2 ( θ ) + c o s 2 ( θ ) = 1 sin^2(\theta) + cos^2(\theta) = 1 . Squaring both sides, we get s i n 4 ( θ ) + c o s 4 ( θ ) + 2 s i n 2 ( θ ) c o s 2 ( θ ) = 1 sin^4(\theta) + cos^4(\theta) + 2sin^2(\theta)cos^2(\theta) = 1

Substitute 2 × [ 1 ] 2 \times [1] into 2 s i n 2 ( θ ) c o s 2 ( θ ) 2sin^2(\theta)cos^2(\theta) , so s i n 4 ( θ ) + c o s 4 ( θ ) = 7 9 sin^4(\theta) + cos^4(\theta) = \frac{7}{9}

Multiply the equations s i n 2 ( θ ) + c o s 2 ( θ ) = 1 sin^2(\theta) + cos^2(\theta) = 1 and s i n 4 ( θ ) + c o s 4 ( θ ) = 7 9 sin^4(\theta) + cos^4(\theta) = \frac{7}{9} to get

s i n 6 ( θ ) + c o s 6 ( θ ) + s i n 4 ( θ ) c o s 2 ( θ ) + c o s 4 ( θ ) s i n 2 ( θ ) = 7 9 sin^6(\theta) + cos^6(\theta) + sin^4(\theta)cos^2(\theta) + cos^4(\theta)sin^2(\theta) = \frac{7}{9}

Note that s i n 4 ( θ ) c o s 2 ( θ ) + c o s 4 ( θ ) s i n 2 ( θ ) sin^4(\theta)cos^2(\theta) + cos^4(\theta)sin^2(\theta) can be factorised to ( s i n 2 ( θ ) c o s 2 ( θ ) ) × ( s i n 2 ( θ ) + c o s 2 ( θ ) ) (sin^2(\theta)cos^2(\theta)) \times (sin^2(\theta) + cos^2(\theta))

s i n 2 ( θ ) c o s 2 ( θ ) = 1 9 sin^2(\theta)cos^2(\theta) = \frac{1}{9} as of [1] and s i n 2 ( θ ) + c o s 2 ( θ ) = 1 sin^2(\theta) + cos^2(\theta) = 1

Therefore, s i n 6 ( θ ) + c o s 6 ( θ ) + 1 9 = 7 9 = 6 9 = 2 3 sin^6(\theta) + cos^6(\theta) + \frac{1}{9} = \frac{7}{9} = \frac{6}{9} = \frac{2}{3}

Then the answer is 2 + 3 = 5 2 + 3 = \boxed{5}

Lucas Nascimento
Oct 19, 2015

I hope you guys find it helpful. If you have lemons... If you have lemons...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...