Same Old Question!

Let A A denote the last 4 digits of the number 201 6 2016 2016^{2016} . Compute A 1600 A-1600 .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 30, 2018

Let N = 201 6 2016 N=2016^{2016} . We need to find A = N m o d 10000 A = N \bmod 10000 . Since gcd ( 2016 , 10000 ) 1 \gcd (2016, 10000) \ne 1 , we consider the factors of 2 4 = 16 2^4 = 16 and 5 4 = 625 5^4 = 625 separately using Chinese remainder theorem .

Factor 16: N 0 (mod 16) N \equiv 0 \text{ (mod 16)} .

Factor 625: Since gcd ( 2016 , 625 ) = 1 \gcd (2016, 625) = 1 , we can apply Euler's theorem and note that the Euler's totient function ϕ ( 625 ) = 500 \phi (625) = 500 .

N 201 6 2016 m o d ϕ ( 625 ) (mod 625) 201 6 2016 m o d 500 (mod 625) 201 6 16 (mod 625) ( 2025 9 ) 16 (mod 625) ( 16 2025 9 15 + 9 16 ) (mod 625) ( 16 225 9 16 + 9 16 ) (mod 625) ( 3599 9 16 ) (mod 625) 474 ( 10 1 ) 16 (mod 625) 151 ( 15 16 2 1 0 2 16 10 + 1 ) (mod 625) 151 ( 12000 160 + 1 ) (mod 625) 151 ( 125 160 + 1 ) (mod 625) 151 ( 34 ) (mod 625) 5134 (mod 625) 134 (mod 625) 491 (mod 625) \begin{aligned} N & \equiv 2016^{2016 \bmod \phi(625)} \text{ (mod 625)} \\ & \equiv 2016^{2016 \bmod 500} \text{ (mod 625)} \\ & \equiv 2016^{16} \text{ (mod 625)} \\ & \equiv (2025-9)^{16} \text{ (mod 625)} \\ & \equiv \left(-16\cdot 2025\cdot 9^{15} + 9^{16}\right) \text{ (mod 625)} \\ & \equiv \left(-16\cdot 225 \cdot 9^{16} + 9^{16}\right) \text{ (mod 625)} \\ & \equiv \left(-3599\cdot 9^{16}\right) \text{ (mod 625)} \\ & \equiv -474(10-1)^{16} \text{ (mod 625)} \\ & \equiv 151\left(\frac {15\cdot 16}2 \cdot 10^2 -16\cdot 10 + 1\right) \text{ (mod 625)} \\ & \equiv 151\left(12000 -160 + 1\right) \text{ (mod 625)} \\ & \equiv 151\left(125 -160 + 1\right) \text{ (mod 625)} \\ & \equiv 151\left(-34\right) \text{ (mod 625)} \\ & \equiv -5134 \text{ (mod 625)} \\ & \equiv -134 \text{ (mod 625)} \\ & \equiv 491 \text{ (mod 625)} \end{aligned}

This implies that N 625 n + 491 N \equiv 625n + 491 , where n n is a integer, and

625 n + 491 0 (mod 16) n + 11 0 (mod 16) n 5 N 625 5 + 11 3616 (mod 10000) \begin{aligned} 625n + 491 & \equiv 0 \text{ (mod 16)} \\ n + 11 & \equiv 0 \text{ (mod 16)} \\ \implies n & \equiv 5 \\ N & \equiv 625\cdot 5+11 \equiv 3616 \text{ (mod 10000)} \end{aligned}

Therefore, A 1600 = 3616 1600 = 2016 A-1600 = 3616-1600 = \boxed{2016} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...