What is the 4 0 5 0 th term of the following sequence?
− 2 5 2 0 , − 4 5 4 0 , − 6 5 5 9 , − 8 5 7 7 , − 1 0 5 9 4 , . . .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
− 2 5 2 0 2 0 2 0 , − 4 5 2 0 1 9 4 0 , − 6 5 2 0 1 8 5 9 , − 8 5 2 0 1 7 7 7 , − 1 0 5 9 4 , . . .
We note that the difference between consecutive terms starts from 2 0 2 0 and decreases by 1 consecutively. Let the n th term be a n and a 0 = − 4 9 9 . Then we have:
a 1 a 2 a 3 ⋯ ⟹ a n ⟹ a 4 0 5 0 = − 4 9 9 − 2 0 2 1 = − 2 5 2 0 = − 4 9 9 − 2 0 2 1 − 2 0 2 0 = − 4 5 2 0 = − 4 9 9 − 2 0 2 1 − 2 0 2 0 − 2 0 1 9 = − 6 5 5 9 = ⋯ = − 4 9 9 − n terms ( 2 0 2 1 + 2 0 2 0 + 2 0 1 9 + ⋯ + ( 2 0 2 2 − n ) ) = − 4 9 9 − 2 n ( 4 0 4 3 − n ) = − 4 9 9 − 2 4 0 5 0 ( − 7 ) = 1 3 6 7 6
f(x) = -2020x-500 for x=1,2
Now, f(x) = k(x-1)(x-2)-2020x-500 for any x=n
Here, f(3) = 2k-2020×3-500
Or, -6559 = 2k-6560
So, k=0.5
Then, f(n) = 0.5(n-1)(n-2)-2020n-500
So, f(4050) = 13676
Problem Loading...
Note Loading...
Set Loading...
a 1 = − 2 5 2 0 a 2 = − 4 5 4 0 = − 2 5 2 0 − 2 0 2 0 a 3 = − 6 5 5 9 = − 2 5 2 0 − 2 0 2 0 − 2 0 1 9 = − 2 5 2 0 − ( 2 ) 2 0 2 0 + 1 a 4 = − 8 5 7 7 = − 2 5 2 0 − 2 0 2 0 − 2 0 1 9 − 2 0 1 8 = − 2 5 2 0 − ( 3 ) 2 0 2 0 + 1 + 2 a 5 = − 8 5 7 7 = − 2 5 2 0 − 2 0 2 0 − 2 0 1 9 − 2 0 1 8 − 2 0 1 7 = − 2 5 2 0 − ( 4 ) 2 0 2 0 + 1 + 2 + 3
a n = − 2 5 2 0 − 2 0 2 0 ( n − 1 ) + 2 ( n − 2 ) ( n − 1 )
For n = 4 0 5 0
a 4 0 5 0 = − 2 5 2 0 − 2 0 2 0 ( 4 0 5 0 − 1 ) + 2 ( 4 0 5 0 − 2 ) ( 4 0 5 0 − 1 ) = − 2 5 2 0 − 2 0 2 0 ( 4 0 5 0 − 1 ) + 2 0 2 4 ( 4 0 5 0 − 1 ) = − 2 5 2 0 + 4 ( 4 0 4 9 ) = 1 3 6 7 6