#Same sequence 1

What is the 4050 4050 th term of the following sequence?

2520 , 4540 , 6559 , 8577 , 10594 , . . . -2520,-4540,-6559,-8577,-10594,...

15676 13576 14576 -2997 -8792 8794 13676

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pop Wong
Sep 1, 2020

a 1 = 2520 a 2 = 4540 = 2520 2020 a_1 = -2520 \\ a_2 = -4540 = -2520 \color{#69047E} {- 2020} \\ a 3 = 6559 = 2520 2020 2019 = 2520 ( 2 ) 2020 + 1 a_3 = -6559 = -2520 - 2020 - 2019 = -2520 \color{#69047E} {- (2) 2020 }\color{#3D99F6} { + 1 } \\ a 4 = 8577 = 2520 2020 2019 2018 = 2520 ( 3 ) 2020 + 1 + 2 a_4 = -8577 = -2520 - 2020 - 2019 - 2018 = -2520 -\color{#69047E} { (3) 2020} \color{#3D99F6} { + 1 + 2 }\\ a 5 = 8577 = 2520 2020 2019 2018 2017 = 2520 ( 4 ) 2020 + 1 + 2 + 3 a_5 = -8577 = -2520 - 2020 - 2019 - 2018 -2017 = -2520 - \color{#69047E} {(4) 2020} \color{#3D99F6} {+ 1 + 2 + 3}

a n = 2520 2020 ( n 1 ) + ( n 2 ) ( n 1 ) 2 a_n = -2520 - \color{#69047E} {2020 (n-1)} \color{#3D99F6} {+ \cfrac{(n-2)(n-1)}{2} }

For n = 4050 n = 4050

a 4050 = 2520 2020 ( 4050 1 ) + ( 4050 2 ) ( 4050 1 ) 2 = 2520 2020 ( 4050 1 ) + 2024 ( 4050 1 ) = 2520 + 4 ( 4049 ) = 13676 \begin{aligned} a_{4050} &= -2520 - 2020 (4050-1) + \cfrac{(4050-2)(4050-1)}{2} \\ &= -2520 -2020(4050-1) + 2024 (4050-1) \\ &= -2520 + 4 (4049) \\ &= \boxed{13676} \end{aligned}

25 20 , 45 2020 40 , 65 2019 59 , 85 2018 77 , 105 2017 94 , . . . -25\underbrace{20,-45}_{2020}\underbrace{40,-65}_{2019}\underbrace{59,-85}_{2018}\underbrace{77,-105}_{2017}94,...

We note that the difference between consecutive terms starts from 2020 2020 and decreases by 1 1 consecutively. Let the n n th term be a n a_n and a 0 = 499 a_0=-499 . Then we have:

a 1 = 499 2021 = 2520 a 2 = 499 2021 2020 = 4520 a 3 = 499 2021 2020 2019 = 6559 = a n = 499 ( 2021 + 2020 + 2019 + + ( 2022 n ) ) n terms = 499 n ( 4043 n ) 2 a 4050 = 499 4050 ( 7 ) 2 = 13676 \begin{aligned} \\ a_1 & = - 499 - 2021 = -2520 \\ a_2 & = - 499 - 2021 - 2020 = - 4520 \\ a_3 & = - 499 - 2021-2020-2019 = - 6559 \\ \cdots & = \cdots \\ \implies a_n & = - 499 - \underbrace{(2021 + 2020 + 2019 + \cdots + (2022-n))}_{n \text{ terms}} \\ & = - 499 - \frac {n(4043-n)}2 \\ \implies a_{4050} & = -499 - \frac {4050(-7)}2 = \boxed{13676} \end{aligned}

Tajrian Munsha
Sep 1, 2020

f(x) = -2020x-500 for x=1,2

Now, f(x) = k(x-1)(x-2)-2020x-500 for any x=n

Here, f(3) = 2k-2020×3-500

Or, -6559 = 2k-6560

So, k=0.5

Then, f(n) = 0.5(n-1)(n-2)-2020n-500

So, f(4050) = 13676

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...