Samir's system of equations

Algebra Level 4

Let x x and y y be positive numbers such that { x 2 + y x y = 2013 , y 2 + x x y = 671. \begin{cases} x^2+y\sqrt{xy}=2013, \\ y^2+x\sqrt{xy}=671. \\ \end{cases}

If y 2 = a b y^2 = \frac{a}{b} where a a and b b are positive coprime numbers, what is a + b a+b ?

This problem is posed by Samir K.


The answer is 699.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

17 solutions

x 2 + y x y = 2013 x^2 +y\sqrt{xy}=2013 multiply with y \sqrt{y} become

x 2 y + y 2 x = 2013 y x^2\sqrt{y} +y^2\sqrt{x}=2013\sqrt{y} ..........(1)

y 2 + x x y = 671 y^2 +x\sqrt{xy}=671 multiply with x \sqrt{x} become

y 2 x + x 2 y = 671 x y^2\sqrt{x} +x^2\sqrt{y}=671\sqrt{x} ..........(2)

Subtracting (1) and (2), we find

2013 y 671 x = 0 2013\sqrt{y}-671\sqrt{x}=0 , so

x = 9 y x=9y , substitute to (2), we get

28 y 2 = 671 28y^2=671

y 2 = 671 28 y^2=\frac {671}{28} , so a + b = 671 + 28 = 699 a+b=671+28=\underline{699}

Moderator note:

Nice job!

Out of several correct solutions, I like this one best, because it avoids division. While not a real issue in this problem, the division often needs to be justified.

Alexander Borisov - 7 years, 9 months ago
Ho Wei Haw
Aug 19, 2013

x 2 + y x y = 2013 x ( x x + y y ) = 2013 ( 1 ) x^2+y\sqrt{xy}=2013\Rightarrow {\sqrt{x}}(x\sqrt{x}+y\sqrt{y})=2013 - (1)

y 2 + x x y = 671 y ( x x + y y ) = 671 ( 2 ) y^2+x\sqrt{xy}=671\Rightarrow {\sqrt{y}}(x\sqrt{x}+y\sqrt{y})=671 - (2)

( 1 ) ( 2 ) : x y = 3 x = 3 y ( 3 ) \frac{(1)}{(2)}:\frac{\sqrt{x}}{\sqrt{y}}=3\Rightarrow \sqrt{x}=3\sqrt{y}-(3)

Sub. (3) into (1)

3 y [ 9 y ( 3 y ) + y y ] = 2013 3\sqrt{y}[9y(3\sqrt{y})+y\sqrt{y}]=2013

28 y 2 = 671 y 2 = 671 28 28y^2=671\Rightarrow y^2=\frac{671}{28}

a + b = 699 \therefore a + b = 699

Moderator note:

Nice job!

Nicely done!

Alexander Borisov - 7 years, 9 months ago

Log in to reply

The division can be easily justified in this solution. Seeing the simplicity of the solution I think this should have got votes comparable to K h a l i m u d i n s Khalimudin's solution......( I'm not offending in any manner if I may seem to do so)

Nishant Sharma - 7 years, 8 months ago
Jonathan Fang
Aug 19, 2013

By factoring out x 1 2 x^\frac{1}{2} on the top and y 1 2 y^\frac{1}{2} you get x 1 2 ( x 3 2 + y 3 2 ) = 2013 x^\frac{1}{2}(x^\frac{3}{2}+y^\frac{3}{2})=2013 y 1 2 ( x 3 2 + y 3 2 ) = 671 y^\frac{1}{2}(x^\frac{3}{2}+y^\frac{3}{2})=671 Dividing the second equation from the first gives x y = 3 \frac{\sqrt{x}}{\sqrt{y}}=3 or x = 9 y x=9y , substituting back in to the first equation gives you y 2 = 671 28 y^2=\frac{671}{28} , so a + b = 699 a+b=699

Moderator note:

Nice job!

Josh Petrin
Aug 19, 2013

Factor a x \sqrt{x} from the top equation and a y \sqrt{y} from the bottom: ( x x + y y ) x = 2013 ( x x + y y ) y = 671 (x\sqrt{x} + y\sqrt{y})\sqrt{x} = 2013 \\ (x\sqrt{x} + y\sqrt{y})\sqrt{y} = 671 so we find that x = 2013 x x + y y y = 671 x x + y y = 3 x . \sqrt{x} = \frac{2013}{x\sqrt{x} + y\sqrt{y}} \\ \sqrt{y} = \frac{671}{x\sqrt{x} + y\sqrt{y}} = 3\sqrt{x}. So, when we square the final equation y = 3 x \sqrt{y} = 3\sqrt{x} , we find that y = 9 x y = 9x . Substituting the value of x x into the first equation, we find that 81 y 2 + y 9 y 2 = 2013 27 y 2 + y 2 = 671 y 2 = 671 28 , \begin{aligned} 81y^2 + y\sqrt{9y^2} &= 2013 \\ 27y^2 + y^2 &= 671 \\ y^2 &= \frac{671}{28}, \end{aligned} and a + b = 699 a + b = \boxed{699} .

Before writing 2013 x x + y y \frac{2013}{x\sqrt{x}+y\sqrt{y}} you may want to note that the denominator is non-zero. It is, of course, obvious here, since 2013 2013 is a non-zero constant, but it is a good habit to make sure that all your expressions are defined. Otherwise, a nice solution!

Alexander Borisov - 7 years, 9 months ago
Patrick Hompe
Aug 18, 2013

x 2 + y x y y 2 + x x y = 2013 671 = 3 \frac{x^2+y\sqrt{xy}}{y^2+x\sqrt{xy}}=\frac{2013}{671}=3 , so x 2 + y x y y 2 + x x y y 2 x x y y 2 x x y = ( y 3 x 3 ) 3 y ( y 3 x 3 ) = x y y = 2013 671 = 3 \frac{x^2+y\sqrt{xy}}{y^2+x\sqrt{xy}} \cdot \frac{y^2-x\sqrt{xy}}{y^2-x\sqrt{xy}}=\frac{(y^3-x^3)\sqrt{3}}{y(y^3-x^3)}=\frac{\sqrt{xy}}{y}=\frac{2013}{671}=3 . This is equivalent to x = 9 y x=9y . Plugging back in to the second equation, we obtain y 2 + 9 y 9 y 2 = 671 y^2+9y\sqrt{9y^2}=671 , which yields y 2 = 671 28 y^2=\frac{671}{28} .

a minor typo: in the third expression from the right on the second line the 3 \sqrt{3} should be a x y \sqrt{xy}

Patrick Hompe - 7 years, 9 months ago

Nicely done!

Alexander Borisov - 7 years, 9 months ago
Vikram Waradpande
Aug 20, 2013

The given equations can be transformed as x ( x x + y y ) = 2013 y ( y y + x x ) = 671 \sqrt{x}( x\sqrt{x} + y\sqrt{y}) = 2013 \\ \sqrt{y} ( y\sqrt{y} + x\sqrt{x}) = 671 Dividing the first equation by the second yields x = 9 y x = 9y . Plugging this value in any of the given equation and solving for y 2 y^2 gives us y 2 = 28 671 y^2 = \frac{28}{671} So a + b = 699 \boxed { a+b=699}

The value of y 2 y^2 is 671 28 \frac{671}{28} and not (\frac{28}{671}\

Ankush Tiwari - 7 years, 9 months ago
Kishlaya Jaiswal
Aug 19, 2013

GIven: x 2 + y x y = 2013 x^2 + y\sqrt{xy}=2013 --eqn. (i)
y 2 + x x y = 671 y^2 + x\sqrt{xy}=671 --eqn. (ii)

Taking x \sqrt{x} common from eqn (i) and y \sqrt{y} from eqn (ii), we get - x ( x x + y y ) = 2013 \sqrt{x}(x\sqrt{x} + y\sqrt{y})=2013 --eqn. (iii)
y ( y y + x x ) = 671 \sqrt{y}(y\sqrt{y} + x\sqrt{x}) = 671 --eqn. (iv)

Now we divide eqn(iii) by eqn(iv), we are left with - x y = 3 x = 3 y x = 9 y \sqrt{\frac{x}{y}} = 3 \Rightarrow \sqrt{x} = 3\sqrt{y} \Rightarrow x = 9y

Now substituting the values of x \sqrt{x} and x x in eqn(ii) , we get -

y 2 + 27 y 2 = 671 y 2 = 671 28 y^2 + 27y^2 = 671 \Rightarrow y^2 = \frac{671}{28} Since 671 and 28 are coprime to each other, a = 671 , b = 28 a + b = 699 a=671, b=28 \Rightarrow a+b=699

Aditya Parson
Aug 19, 2013

Let x = t y x=ty for some positive t t . Our equations are: t 2 y 2 + y t y 2 = y 2 ( t 2 + t ) = 2013 t^2y^2 + y\sqrt{ty^2}=y^2(t^2+\sqrt{t})=2013 and

y 2 + t y t y 2 = y 2 ( 1 + t t ) = 671 y^2+ty\sqrt{ty^2}=y^2(1+t\sqrt{t})=671

671 t t + t 2 = 2013 t + t 2 \Rightarrow \frac{671 \sqrt{t}}{\sqrt{t}+t^2}=\frac{2013}{\sqrt{t}+t^2} t = 3 t = 9 \sqrt{t}=3 \Rightarrow t=9

y 2 = 671 1 + 9 3 = 671 28 y^2=\frac{671}{1+9 \cdot 3}=\frac{671}{28}

Hence, since g c d ( 671 , 28 ) = 1 gcd(671,28)=1 , a + b = 699 a+b=\boxed{699} .

This is essentially correct, but one must exclude the possibility that y = 0 y=0 and x 0 x\neq 0 before writing x = t y . x=ty. And then you should also mention that t + t 2 \sqrt{t}+t^2 is not zero, so your expression makes sense.

Alexander Borisov - 7 years, 9 months ago

Log in to reply

Since it was already given that they are positive, I skipped that part, but I do agree that I should have verified that t + t 2 \sqrt{t}+t^2 should not be zero.

Aditya Parson - 7 years, 9 months ago
Vraj Mistry
Jul 1, 2015

Therefore 671+28=699

Gabriel F. Castro
Aug 25, 2013

x² + ysqrt(xy) = 2013 (I) y² + xsqrt(xy) = 671 (II)

Multiply (II) by 3 and then get:

x² + ysqrt(xy) = 3y² + 3xsqrt(xy)

x²-3y² = (3x-y)*sqrt(xy)

sqrt(xy) = (x²-3y²)/(3x-y)

Squaring both sides:

xy = (x²-3y²)²/(3x-y)²

xy(3x-y)² = (x²-3y²)², which gives us x = 9y.

Make the substitution and then find y² = 671/28. Hence, a + b = 699.

Eq 1 - 3* Eq 2 = 0 will be an homogeneous equation, y<>0, we can divide by y^2. Let x/y=t^2; t > 0. We obtain t=3. On the other hand, if x = y * t^2, from Eq 1 we have y^2=2013 / (t^4+t). So y^2 = 671 / 28, a, b coprimes ... a+b=699 :)

The equation in 't' is t^4-3t^3+t-3+0 with the real solution t=3 >0.

Virgilius Teodorescu - 7 years, 9 months ago
Vincent Tandya
Aug 23, 2013

Realize that x 2 + y x y y 2 + x x y = 3 \frac{x^{2}+y\sqrt{xy}}{y^{2}+x\sqrt{xy}}=3

We multiply the numerator and the denominator by y 2 x x y y^2-x\sqrt{xy} .

We get: ( x 2 + y x y ) ( y 2 x x y ) ( y 2 + x x y ) ( y 2 x x y ) = 3 \frac{(x^2+y\sqrt{xy})(y^2-x\sqrt{xy})}{(y^2+x\sqrt{xy})(y^2-x\sqrt{xy})}=3

We simplify the expression above.

x 2 y 2 + ( y 3 x 3 ) x y x 2 y 2 y ( y 3 x 3 ) = 3 \frac{x^2y^2+(y^3-x^3) \sqrt{xy} - x^2y^2}{y(y^3-x^3)}=3

We can now get a much more simple equation. x y y = 3 x = 9 y \frac{\sqrt{xy}}{y}=3 \rightarrow x=9y

Subtitute the value of x x to the second equation.

y 2 + x x y = 671 y^2 + x\sqrt{xy} = 671

Subtituting, y 2 + 9 y 9 y y = 671 y^2 + 9y \cdot \sqrt{9y\cdot y} =671 .

It is simple to work out the value of y y .

y 2 + 27 y 2 = 671 y^2 + 27 y^2 = 671

y 2 = 671 28 a + b = 699 y^2=\frac{671}{28} \rightarrow a+b=\boxed{699}

Kee Wei Lee
Aug 22, 2013

First note that both the equations can be written as; x x ( x ) + ( x ) y ( y ) = 2013 ( x ) ( x ( x ) + y ( y ) ) = 2013 x \sqrt{x} \sqrt(x)+ \sqrt(x)y \sqrt(y)=2013 \Rightarrow \sqrt(x)(x \sqrt(x)+y \sqrt(y))=2013

y ( y ) ( y ) + x ( x ) ( y ) = 671 ( y ) ( y ( y ) + x ( x ) ) = 671 y \sqrt(y) \sqrt(y)+ x \sqrt(x) \sqrt(y)=671 \Rightarrow \sqrt(y)(y \sqrt(y)+x \sqrt(x))=671

As y ( y ) + x ( x ) > 0 y \sqrt(y)+x \sqrt(x)>0 we can divide both euations to get;

( x ) ( y ) = 3 x y = 9 x = 9 y \frac{\sqrt(x)}{\sqrt(y)=3} \Rightarrow \frac{x}{y}=9 \Rightarrow x=9y

If so we can then get; ( 9 y ) 2 + 3 y 2 = 2013 84 y 2 = 2013 y 2 = 2013 84 = 671 28 (9y)^2+3y^2=2013 \Rightarrow 84y^2=2013 \Rightarrow y^2=\frac{2013}{84}=\frac{671}{28}

So we get 671 + 28 = 699 671+28=699

Avika Septriani
Aug 22, 2013

We have x ( x x + y y ) = 2013 \sqrt{x}(x\sqrt{x}+y\sqrt{y})=2013 and y ( y y + x x ) = 671 \sqrt{y}(y\sqrt{y}+x\sqrt{x})=671 . So we will get x = 3 y \sqrt{x}=3\sqrt{y} or equivalent with x = 9 y x=9y . Substitute it to the first equation, then we get 81 y 2 + 3 y 2 = 2013 81y^2+3y^2=2013 , or equivalently y 2 = 2013 84 = 671 28 y^2=\dfrac{2013}{84}= \dfrac{671}{28} . So a + b = 671 + 28 = 699 a+b=671+28=699

Daniel Cabrales
Aug 21, 2013

We can note that x y \sqrt{xy} is the geometric mean of x x and y y , which implies that ( y , x y , x ) (y, \sqrt{xy}, x) is a geometric progression.

Now since we are to find the value of y 2 y^{2} , we can express x x and x y \sqrt{xy} in terms of y y and r r , the common ratio. Since x y \sqrt{xy} is the geometric mean it must be expressed as: x y = y r \sqrt{xy} = yr and x x as the third term so: x = y r 2 x = yr^{2}

Substituting it to the first and second equation, it will yield:

y 2 r 4 + y 2 r = 2013 y^{2}r^{4}+ y^{2}r = 2013

y 2 + y 2 r 3 = 671 y^{2} + y^{2}r^{3} = 671

Which can be factored,

y 2 r ( 1 + r 3 ) = 2013 y^{2}r(1 + r^{3}) = 2013

y 2 ( 1 + r 3 ) = 671 y^{2}(1 + r^{3}) = 671

Now dividing the first equation to the second equation will yield the common ratio r = 3 r = 3

And finally substituting to the first equation we can finally find the value of y 2 y^{2}

y 2 ( 3 + 3 4 ) = 2013 y^{2} (3 + 3^{4}) = 2013

y 2 = 2013 84 y^{2} = \frac{2013}{84}

y 2 = 671 28 y^{2} = \frac{671}{28}

Thus, 671 + 28 = 699 671 + 28 = 699

Gabriel Romon
Aug 20, 2013

Remark that 2013 = 3 × 671 2013=3×671 .

(First equation)- 3×(Second equation) = 0 then.

Divide both sides by x y \sqrt{xy} and set A = x / y A=x/y .

Then A ( A 3 ) + 1 3 A = 0 A(\sqrt{A}-3)+1-\frac{3}{\sqrt{A}} = 0

This equation has only A = 9 A=9 as a solution.

This implies x = 9 y x=9y

Plug it in back in the equations above to get y 2 = 671 / 28 y^{2}=671/28

Hence the result : 699

Ankush Tiwari
Aug 20, 2013

Let x = m y x = my for some real number m m .

Then we have from the first equation ,

m 2 y 2 + y 2 m = 2013 m^2y^2 + y^2\sqrt{m} = 2013

y 2 m ( m m + 1 ) = 2013...... ( 1 ) \Rightarrow y^2\sqrt{m}(m\sqrt{m} + 1) = 2013 ......(1)

Similarly from second equation we have

y 2 ( m m + 1 ) = 671......... ( 2 ) y^2(m\sqrt{m} +1) = 671 .........(2)

Dividing ( 1 ) (1) by ( 2 ) (2)

m = 3 \sqrt{m} = 3

m = 9 \Rightarrow m = 9

Substituting m m in ( 2 ) (2) , we have

28 y 2 = 671 28y^2 = 671

y 2 = 671 28 \Rightarrow y^2 = \frac{671}{28}

a + b = 671 + 28 = 699 a + b = 671 +28 = 699

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...