Sandwich it, May be

Calculus Level 5

lim r r c 0 π 2 x r sin ( x ) d x 0 π 2 x r cos ( x ) d x = L \lim_{r \rightarrow \infty} \frac{r^c \displaystyle\int_{0}^{\frac{\pi}{2}} x^r \sin (x) \space \text{d}x}{\displaystyle\int_{0}^{\frac{\pi}{2}} x^r \cos (x) \space \text{d}x}=\text{L}

Find the value of π L c \pi \text{L} -c , where c R , L > 0 c \in \mathbb{R},\space\text{L} > 0 .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kushal Patankar
Mar 10, 2017

Relevant wiki: Jensen's Inequality

Assume f ( r ) = 0 π 2 x r sin x d x f(r) = \displaystyle\int_{0}^{\frac{\pi}{2}} x^{r} \sin x \text{ d}x

Using integration by parts, 0 π 2 x r cos x d x = x r + 1 cos x r + 1 0 π 2 + 0 π 2 x r + 1 sin x r + 1 d x 0 π 2 x r cos x d x = 0 π 2 x r + 1 sin x r + 1 d x = f ( r + 1 ) r + 1 \begin{aligned} \displaystyle\int_{0}^{\frac{\pi}{2}} x^{r} \cos x \text{ d}x &= {\left.\frac{x^{r+1} \cos x}{r+1}\right\vert_{0}^{\frac{\pi}{2}}} + \displaystyle\int_{0}^{\frac{\pi}{2}} \frac{x^{r+1} \sin x}{r+1} \text{ d}x\\\displaystyle\int_{0}^{\frac{\pi}{2}} x^{r} \cos x \text{ d}x &=\displaystyle\int_{0}^{\frac{\pi}{2}} \frac{x^{r+1} \sin x}{r+1}\text{ d}x = \frac{f(r+1)}{r+1} \end{aligned}

Thus we have,

L = lim r r c 0 π 2 x r sin ( x ) d x 0 π 2 x r cos ( x ) d x = lim r r c ( r + 1 ) f ( r ) f ( r + 1 ) \text{L}=\lim_{r \rightarrow \infty} \frac{r^c \displaystyle\int_{0}^{\frac{\pi}{2}} x^r \sin (x) \space \text{d}x}{\displaystyle\int_{0}^{\frac{\pi}{2}} x^r \cos (x) \space \text{d}x} = \lim_{r \rightarrow \infty} \large{\frac{r^c (r+1) f(r)}{f(r+1)}}

Now,

f ( r ) < 0 π 2 x r d x f ( r ) < ( π 2 ) r + 1 r + 1 also , f ( r ) > 0 π 2 2 π x r + 1 d x sin x > 2 x π , x ( 0 , π 2 ) f ( r ) > ( π 2 ) r + 1 r + 2 r r + 2 < r ( 2 π ) r + 1 f ( r ) < r r + 1 \begin{aligned} f(r)&<\displaystyle\int_{0}^{\frac{\pi}{2}} x^r \text{ d}x \\ f(r) &< \frac{\left(\frac{\pi}{2}\right)^{r+1}}{r+1} \\ \color{#3D99F6}{\text{also},} \\ f(r) &> \displaystyle\int_{0}^{\frac{\pi}{2}} \frac{2}{\pi}x^{r+1} \text{ d}x \quad \quad \quad \small\color{#3D99F6}{\because \sin x > \frac{2x}{\pi}, \quad \forall x\in\left(0,\frac{\pi}{2}\right)} \\f(r) &>\frac{\left(\frac{\pi}{2}\right)^{r+1}}{r+2} \\\\ \Rightarrow \frac{r}{r+2} < r \left(\frac{2}{\pi}\right)^{r+1} f(r) <\frac{r}{r+1} \end{aligned}

Consider,

lim r f ( r ) f ( r + 1 ) = lim r r ( 2 π ) r + 1 f ( r ) ( r + 1 ) ( 2 π ) r + 2 f ( r + 1 ) 2 ( r + 1 ) π r = 2 π \lim_{r \rightarrow \infty} \dfrac{f(r)}{f(r+1)} = \lim_{r \rightarrow \infty} \dfrac{r\space \left(\dfrac{2}{\pi}\right)^{r+1} f(r)}{(r+1)\left(\dfrac{2}{\pi}\right)^{r+2} f(r+1)}\cdot \dfrac{2(r+1)}{\pi r} = \dfrac{2}{\pi}

L = lim r r c ( r + 1 ) f ( r ) f ( r + 1 ) = lim r r c ( r + 1 ) 2 π \begin{aligned} \text{L} &= \lim_{r \rightarrow \infty} r^{c} \space (r+1) \cdot \dfrac{f(r)}{f(r+1)} \\ &= \lim_{r \rightarrow \infty} \quad r^{c} \space (r+1) \cdot \dfrac{2}{\pi}\end{aligned}

Since L > 0 c \text{L}>0 \Rightarrow c needs to be 1 -1 .

Thus, L = 2 π \text{L}= \dfrac{2}{\pi}

π L c = π 2 π ( 1 ) = 3 \boxed{\large\pi \text{L} -c=\pi \cdot \dfrac{2}{\pi} -(-1)=3}

how did u get the idea of the line after also.... ??? please give an insight @Kushal Patankar

Zerocool 141 - 4 years, 2 months ago

Log in to reply

jensen's inequality is applied there. \because sin(x) si concave in (0,pi/2) it lies above the line joining (0,0) and (pi/2,1).

Kushal Patankar - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...