Summing Tiny Floors

Calculus Level 2

lim n x + 2 x + 3 x + + n x n 2 \large \displaystyle\lim_{n \to \infty} \dfrac{\lfloor x \rfloor+\lfloor 2x \rfloor+\lfloor 3x \rfloor+\cdots+\lfloor nx \rfloor}{n^2}

Let x x be a constant real number . Find the value of the limit above in terms of x x .

Notation : \lfloor \cdot \rfloor denotes the floor function .

1 2 x \frac12x 1 3 x \frac13x 1 4 x \frac14x 1 5 x \frac15x None of these choices

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mayank Chaturvedi
May 27, 2016

For any real m, we can write m = m { m } \left\lfloor m \right\rfloor =m-\left\{ m \right\}

lim n x + 2 x + 3 x + + n x n 2 \large \displaystyle\lim_{n \to \infty} \dfrac{\lfloor x \rfloor+\lfloor 2x \rfloor+\lfloor 3x \rfloor+\cdots+\lfloor nx \rfloor}{n^2} lim n x + 2 x + 3 x + . . . . . . . . . . n x ( { x } + { 2 x } + { 3 x } . . . . . . . . . . . { n x } ) n 2 \large \displaystyle\lim_{n \to \infty}\frac { x+2x+3x+..........nx-(\left\{ x \right\} +\left\{ 2x \right\} +\left\{ 3x \right\} ...........\left\{ nx \right\} ) }{ n^2 } lim n x + 2 x + 3 x + . . . . . . . . . . n x n 2 lim n { x } + { 2 x } . . . . . . . . . . . . { n x } n 2 \large \displaystyle\lim _{ n\to \infty } \frac { x+2x+3x+..........nx }{ n^2 } -\lim _{ n\to \infty } \frac { \left\{ x \right\} +\left\{ 2x \right\} ............\left\{ nx \right\} }{ n^2 } lim n x + 2 x + 3 x + . . . . . . . . . . n x n 2 \large \displaystyle \lim _{ n\to \infty } \frac { x+2x+3x+..........nx }{ n^2 } lim n x n ( n + 1 ) 2 n 2 = lim n x ( n + 1 ) 2 n = 1 x 2 \large \displaystyle \lim _{ n\to \infty } \frac { xn(n+1) }{ 2{ n }^{ 2 } } =\lim _{ n\to \infty } \frac { x(n+1) }{ 2n } =\frac { 1x }{ 2 }

Why does

lim n { x } + { 2 x } . . . . . . . . . . . . { n x } n 2 = 0 ? \lim _{ n\to \infty } \frac { \left\{ x \right\} +\left\{ 2x \right\} ............\left\{ nx \right\} }{ n^2 } = 0 \; ?

Pi Han Goh - 5 years ago

Log in to reply

0<{U}<1 so 0<{nx}<1. So the sum S of {nx} are lower than a sum of 1. But 1+1+1+....+1 = n so

0 < S n 2 < n n 2 0< \frac {S}{n^2} <\frac {n}{n^2}

0 < S n 2 < 1 n 0<\frac{S}{n^2} < \frac{1}{n}

When n + n\rightarrow+\infty , 1 n + 0 \frac{1}{n}\rightarrow+0 and S n 2 + 0 \frac{S}{n^2}\rightarrow+0 as well

Akryuma G - 5 years ago

Why does this only works for rational numbers?

Log in to reply

It works for all real x.

Mayank Chaturvedi - 5 years ago

Log in to reply

On your answer you said that it works for any rational m, wouldn't it be better to said any real m?

Basic Math Problem: I dont understand the last line, why xn(n+1) ?

Johannes R - 5 years ago

Log in to reply

1 + 2 + 3 + + n = n ( n + 1 ) 2 1 + 2 + 3 + \cdots + n = \dfrac {n(n+1)}2

See sum of n, n², or n³ .

Pi Han Goh - 5 years ago

Nice solution ...+1 , there is a typo in the 2nd Line.

Sabhrant Sachan - 5 years ago

Log in to reply

Thanks! edited.

Mayank Chaturvedi - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...