SAT 1000 problems - P2

Algebra Level 2

Let function

f ( x ) = { 2 x + 1 1 x 1 4 x x > 1 f(x)=\begin{cases} |2^{x+1}-1| &x≤1 \\ 4-x &x>1 \end{cases}

If there exist p , q , r R , p q r p,q,r \in \mathbb R, \ p≠q≠r , f ( p ) = f ( q ) = f ( r ) f(p)=f(q)=f(r) , what is the range of 2 p + 2 q + 2 r 2^p+2^q+2^r ?

( 17 2 , 35 2 ) (\dfrac{17}{2},\dfrac{35}{2}) ( 9 , 16 ) (9,16) ( 8 , 16 ) (8,16) ( 9 , 17 ) (9,17)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Jul 24, 2019

If one graphs f ( x ) f(x) out, one finds that:

f ( 1 ) = f ( 4 ) = 0 f(-1) = f(4) = 0 and f ( 0 ) = f ( 3 ) = 1 f(0) = f(3) = 1

and that l i m x f ( x ) 1 lim_{x \rightarrow -\infty} f(x) \rightarrow 1 is a horizontal asymptote. If there exists real p q r p \neq q \neq r such that f ( p ) = f ( q ) = f ( r ) f(p) = f(q) = f(r) , then two necessary and sufficient conditions are:

0 < f ( p ) , f ( q ) , f ( r ) < 1 0 < f(p), f(q), f(r) < 1 (i)

p ( , 1 ) ; q ( 1 , 0 ) ; r ( 3 , 4 ) p \in (-\infty, -1); q \in (-1, 0); r \in (3, 4) (ii)

As f ( x ) 0 f(x) \rightarrow 0 , this corresponds to p , q 1 , r 4 p, q \rightarrow -1, r \rightarrow 4 . This computes to an upper bound of 2 p + 2 q + 2 r = 2 1 + 2 1 + 2 4 = 17. 2^{p} + 2^{q} + 2^{r} = 2^{-1} + 2^{-1} + 2^4 = 17.

As f ( x ) 1 f(x) \rightarrow 1 , this corresponds to p , q 0 , r 3 p \rightarrow -\infty, q \rightarrow 0, r \rightarrow 3 . This computes to a lower bound of 2 p + 2 q + 2 r = 2 + 2 0 + 2 3 = 9. 2^{p} + 2^{q} + 2^{r} = 2^{-\infty} + 2^{0} + 2^3 = 9.

Hence, the desired range of 2 p + 2 q + 2 r 2^{p} + 2^{q} + 2^{r} comes to ( 9 , 17 ) . \boxed{(9, 17)}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...