SAT1000 - P277

Geometry Level pending

Without using calculator , find 4 cos 50 ° tan 40 ° 4 \cos 50 \degree - \tan 40 \degree .

Let A A denote the answer. Submit 1000 A \lfloor 1000A \rfloor .


Have a look at my problem set: SAT 1000 problems


The answer is 1732.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Jun 25, 2020

4 cos 50 ° tan 40 ° 4 \cos 50° - \tan 40°

= 4 sin 40 ° tan 40 ° = 4 \sin 40° - \tan 40°

= 4 sin 40 ° sin 40 ° cos 40 ° = 4\sin 40° - \frac{\sin 40°}{\cos 40°}

= 2 cos 40 ° ( 2 sin 40 ° cos 40 ° 1 2 sin 40 ° ) = \frac{2}{\cos 40°}(2 \sin 40° \cos 40° - \frac{1}{2} \sin 40°)

= 2 cos 40 ° ( sin 80 ° 1 2 sin 40 ° ) = \frac{2}{\cos 40°}(\sin 80° - \frac{1}{2} \sin 40°)

= 2 cos 40 ° ( sin 100 ° 1 2 sin 40 ° ) = \frac{2}{\cos 40°}(\sin 100° - \frac{1}{2} \sin 40°)

= 2 cos 40 ° ( sin ( 60 ° + 40 ° ) 1 2 sin 40 ° ) = \frac{2}{\cos 40°}(\sin (60° + 40°) - \frac{1}{2} \sin 40°)

= 2 cos 40 ° ( sin 60 ° cos 40 ° + cos 60 ° sin 40 ° 1 2 sin 40 ° ) = \frac{2}{\cos 40°}(\sin 60° \cos 40° + \cos 60° \sin 40° - \frac{1}{2} \sin 40°)

= 2 cos 40 ° ( 3 2 cos 40 ° + 1 2 sin 40 ° 1 2 sin 40 ° ) = \frac{2}{\cos 40°}(\frac{\sqrt{3}}{2} \cos 40° + \frac{1}{2} \sin 40° - \frac{1}{2} \sin 40°)

= 2 cos 40 ° ( 3 2 cos 40 ° ) = \frac{2}{\cos 40°}(\frac{\sqrt{3}}{2} \cos 40°)

= 3 = \sqrt{3}

Therefore, A = 3 A = \sqrt{3} and 1000 A = 1732 \lfloor 1000A \rfloor = \boxed{1732} .

The value of the given expression after simplification is tan 60 ° = 3 = 1.73205080... \tan 60\degree =\sqrt 3=1.73205080... .

So, the answer is 1732 \boxed {1732} .

What simplication is required?

Pi Han Goh - 11 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...