SAT1000 - P461

Algebra Level pending

Given that { a n } \{a_n\} is a geometric progression with common ratio q = 2 q=\sqrt{2} . Let S n = k = 1 n a k S_n=\displaystyle \sum_{k=1}^n a_k and T n = 17 S n S 2 n a n + 1 T_n=\dfrac{17 S_n - S_{2n}}{a_{n+1}} , where n n is a positive integer. If T m T_{m} is the maximum term of sequence { T n } \{T_n\} , find m m .


Have a look at my problem set: SAT 1000 problems


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 19, 2020

Given that a n = a 1 q n 1 a_n = a_1q^{n-1} , where q = 2 q=\sqrt 2 , and S n = k = 1 n a k = a 1 ( q n 1 ) q 1 \displaystyle S_n = \sum_{k=1}^n a_k = \frac {a_1(q^n-1)}{q-1} , implies that:

T n = 17 S n S 2 n a n + 1 = 17 a 1 ( q n 1 ) a 1 ( q 2 n 1 ) a 1 q n ( q 1 ) = q 2 n 17 q n + 16 q n ( 1 q ) = 1 1 q ( q n 17 + 16 q n ) To find max ( T n ) d T n d n = 1 1 q ( q n ln q 16 ln q q n ) Putting d T n d n = 0 q 2 n = 16 2 n = 16 n = 4 \begin{aligned} T_n & = \frac {17S_n - S_{2n}}{a_{n+1}} \\ & = \frac {17a_1(q^n-1)-a_1(q^{2n}-1)}{a_1q^n(q-1)} \\ & = \frac {q^{2n}-17q^n+16}{q^n(1-q)} \\ & = \frac 1{1-q} \left(q^n-17+\frac {16}{q^n} \right) & \small \blue{\text{To find }\max(T_n)} \\ \frac {dT_n}{dn} & = \frac 1{1-q} \left(q^n\ln q - \frac {16 \ln q}{q^n} \right) & \small \blue{\text{Putting }\frac {dT_n}{dn} = 0} \\ q^{2n} & = 16 \\ 2^n & = 16 \\ \implies n & = 4 \end{aligned}

Since d 2 T n d n 2 n = 4 < 0 \dfrac {d^2T_n}{dn^2} \bigg|_{n=4} < 0 , max ( T n ) = T 4 \implies \max (T_n) = T_4 . Therefore m = 4 m= \boxed 4 .

T m = 17 16 × 2 m 2 2 m 2 2 1 T_m=\dfrac {17-16\times 2^{-\frac{m}{2}}-2^{\frac{m}{2}}}{\sqrt 2 -1} .

This will be a maximum when 2 m = 16 = 2 4 m = 4 2^m=16=2^4\implies m=\boxed 4 .

Solution to this problem :

Solving the equation x 2 7 x + 16 r 2 = 0 , x^2-7x+16-r^2=0, we get x A = x B = 7 4 r 2 15 2 , x C = x D = 7 + 4 r 2 15 2 x_A=x_B=\dfrac {7-\sqrt {4r^2-15}}{2},x_C=x_D=\dfrac {7+\sqrt {4r^2-15}}{2}

Area of the quadrilateral A B C D ABCD is 4 r 2 15 2 ( 7 + 4 r 2 15 + 7 4 r 2 15 ) \sqrt {\frac{4r^2-15}{2}}\left (\sqrt {7+\sqrt {4r^2-15}}+\sqrt {7-\sqrt {4r^2-15}}\right )

This attains a maximum when r 2 = 14.63889 r^2=14.63889

The value of x 0 = 16 r 2 1.166666 x_0=\sqrt {16-r^2}\approx 1.166666

Therefore the required answer is 1166 \boxed {1166}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...