SAT1000 - P496

Algebra Level pending

Given that a n = n 2 ( cos 2 n π 3 sin 2 n π 3 ) ( n N + ) a_n=n^2(\cos^2 \dfrac{n\pi}{3}-\sin^2 \dfrac{n\pi}{3})\ (n \in \mathbb N^+) , let S n = k = 1 n a k S_n=\displaystyle \sum_{k=1}^{n} a_k .

b n = S 3 n n 4 n ( n N + ) b_n=\dfrac{S_{3n}}{n \cdot 4^n}\ (n \in \mathbb N^+) , T n = k = 1 n b k T_n=\displaystyle \sum_{k=1}^{n} b_k .

T 10 = p q T_{10} = \dfrac{p}{q} , where p , q p,q are positive coprime integers.

Submit p q + 2 ( S 100 + S 201 + S 302 ) \lfloor p-q+2(S_{100}+S_{201}+S_{302}) \rfloor .


Have a look at my problem set: SAT 1000 problems


The answer is 1696806.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 19, 2020

Given that a n = n 2 ( cos 2 n π 3 sin 2 n π 3 ) = n 2 cos 2 n π 3 = { n 2 2 if n m o d 3 0 n 2 if n m o d 3 = 0 a_n = n^2 \left(\cos^2 \dfrac {n\pi}3 - \sin^2 \dfrac {n\pi}3 \right) = n^2 \cos \dfrac {2n\pi}3 = \begin{cases} - \dfrac {n^2}2 & \text{if } n \bmod 3 \ne 0 \\ n^2 & \text{if } n \bmod 3 = 0 \end{cases}

Now consider

S 3 n = 1 2 2 2 2 2 + 3 2 4 2 2 5 2 2 + 6 2 ( 3 n 2 ) 2 2 ( 3 n 1 ) 2 2 + ( 3 n ) 2 = 3 2 k = 1 n ( 3 k ) 2 1 2 k = 1 3 n k 2 = 27 2 k = 1 n k 2 1 2 k = 1 3 n k 2 = 27 2 n ( n + 1 ) ( 2 n + 1 ) 6 1 2 3 n ( 3 n + 1 ) ( 6 n + 1 ) 6 = n ( 9 ( 2 n 2 + 3 n + 1 ) ( 18 n 2 + 9 n + 1 ) 4 = n ( 9 n + 4 ) 2 \begin{aligned} S_{3n} & = - \frac {1^2}2 - \frac {2^2}2 + 3^2 - \frac {4^2}2 - \frac {5^2}2 + 6^2 - \cdots - \frac {(3n-2)^2}2 - \frac {(3n-1)^2}2 + (3n)^2 \\ & = \frac 32 \sum_{k=1}^n (3k)^2 - \frac 12 \sum_{k=1}^{3n} k^2 = \frac {27}2 \sum_{k=1}^n k^2 - \frac 12 \sum_{k=1}^{3n} k^2 \\ & = \frac {27}2 \cdot \frac {n(n+1)(2n+1)}6 - \frac 12 \cdot \frac {3n(3n+1)(6n+1)}6 \\ & = \frac {n(9(2n^2+3n+1)-(18n^2+9n+1)}4 \\ & = \frac {n(9n+4)}2 \end{aligned}

Then we have:

S 3 n + 1 = n ( 9 n + 4 ) 2 ( 3 n + 1 ) 2 2 S 3 n 1 = n ( 9 n + 4 ) 2 ( 3 n ) 2 S 100 = S 3 33 + 1 = 33 ( 9 33 + 4 ) 2 10 0 2 2 = 33.5 S 201 = S 3 67 = 67 ( 9 67 + 4 ) 2 = 20334.5 S 302 = S 3 101 1 = 101 ( 9 101 + 4 ) 2 30 3 2 = 45702.5 \begin{aligned} \implies S_{3n+1} & = \frac {n(9n+4)}2 - \frac {(3n+1)^2}2 \\ \implies S_{3n-1} & = \frac {n(9n+4)}2 - (3n)^2 \\ S_{100} & = S_{3\cdot 33+1} = \frac {33(9\cdot 33+4)}2 - \frac {100^2}2 = -33.5 \\ S_{201} & = S_{3\cdot 67} = \frac {67(9\cdot 67+4)}2 = 20334.5 \\ S_{302} & = S_{3\cdot 101-1} = \frac {101(9\cdot 101+4)}2 - 303^2 = -45702.5 \end{aligned}

And:

b n = S 3 n 4 n n = 9 n + 4 2 4 n T n = k = 1 n b k = k = 1 n 9 k + 4 2 4 k = 9 8 k = 1 n k 4 k 1 + 1 2 k = 0 n 1 1 4 k = 9 8 k = 1 n d d x x k x = 1 4 + 1 2 ( 1 1 4 n 1 1 4 ) = 9 8 d d x k = 1 n x k x = 1 4 + 1 2 ( 4 n 1 4 n 4 n 1 ) = 9 8 d d x [ x ( 1 x n ) 1 x ] x = 1 4 + 4 n 1 6 4 n 1 = 9 8 [ n x n + 1 ( n + 1 ) x n + 1 ( 1 x ) 2 ] x = 1 4 + 4 n 1 6 4 n 1 = 2 ( 4 n + 1 3 n 4 4 n + 1 ) + 4 n 1 6 4 n 1 = 16 ( 4 n 1 ) 9 n 6 4 n T 10 = 16777110 6291456 = 2796185 1048576 \begin{aligned} \implies b_n & = \frac {S_{3n}}{4^n n} = \frac {9n+4}{2 \cdot 4^n} \\ \implies T_n & = \sum_{k=1}^n b_k = \sum_{k=1}^n \frac {9k+4}{2 \cdot 4^k} = \frac 98 \sum_{k=1}^n \frac k{4^{k-1}} + \frac 12 \sum_{k=0}^{n-1} \frac 1{4^k} \\ & = \frac 98 \sum_{k=1}^n \frac d{dx} x^k \bigg|_{x = \frac 14} + \frac 12 \left(\frac {1-\frac 1{4^n}}{1-\frac 14}\right) \\ & = \frac 98 \cdot \frac d{dx} \sum_{k=1}^n x^k \bigg|_{x = \frac 14} + \frac 12 \left(\frac {4^n-1}{4^n-4^{n-1}}\right) \\ & = \frac 98 \cdot \frac d{dx} \left[\frac {x(1-x^n)}{1-x} \right]_{x = \frac 14} + \frac {4^n-1}{6\cdot 4^{n-1}} \\ & = \frac 98 \left[\frac {nx^{n+1}-(n+1)x^n+1}{(1-x)^2} \right]_{x = \frac 14} + \frac {4^n-1}{6\cdot 4^{n-1}} \\ & = 2 \left(\frac {4^{n+1}-3n -4}{4^{n+1}} \right) + \frac {4^n-1}{6\cdot 4^{n-1}} \\ & = \frac {16(4^n-1)-9n}{6\cdot 4^n} \\ \implies T_{10} & = \frac {16777110}{6291456} = \frac {2796185}{1048576} \end{aligned}

Therefore p q + 2 ( S 100 + S 201 + S 302 = 1696806 \left \lfloor p-q+2(S_{100}+S_{201}+S_{302} \right \rfloor = \boxed{1696806} .

S 3 n = n 2 ( 9 n + 4 ) S 201 = 40669 2 S_{3n}=\dfrac {n}{2}(9n+4)\implies S_{201}=\dfrac{40669}{2}

S 3 n + 1 = 2 n + 1 2 S 100 = 67 2 S_{3n+1}=-\dfrac {2n+1}{2}\implies S_{100}=-\dfrac {67}{2}

S 3 n + 2 = 9 n 2 + 14 n + 5 2 S 302 = 91405 2 S_{3n+2}=-\dfrac {9n^2+14n+5}{2}\implies S_{302}=-\dfrac {91405}{2}

b n = 9 n + 4 2 2 n + 1 b_n=\dfrac {9n+4}{2^{2n+1}}\implies

T n = 2 2 n 1 3 × 2 2 n 3 3 n 2 2 n + 1 T_n=\dfrac {2^{2n}-1}{3\times 2^{2n-3}}-\dfrac {3n}{2^{2n+1}}

T 10 = 2796185 1048576 \implies T_{10}=\dfrac {2796185}{1048576}

Hence the required answer is 1696806 \boxed {1696806} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...