SAT1000 - P500

Algebra Level pending

{ a n } \{a_n\} is a sequence such that a 1 = m ( m N + ) a_1=m\ (m \in \mathbb N^+) , a n + 1 = { a n 2 , a n 0 ( m o d 2 ) 3 a n + 1 , a n 1 ( m o d 2 ) a_{n+1}=\begin{cases} \dfrac{a_n}{2} ,\ a_n \equiv 0 \pmod{2} \\ 3 a_n+1 ,\ a_n \equiv 1 \pmod{2} \end{cases} If a 6 = 1 a_6=1 , find the sum of all possible value(s) for m m .


Have a look at my problem set: SAT 1000 problems


The answer is 41.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ved Pradhan
Jun 18, 2020

Work backwards! Given a number a n a_n , a n 1 a_{n-1} can be 2 a n 2a_n or a n 1 3 \dfrac{a_{n}-1}{3} , if it's natural. Thus, going backwards, we get this:

1 2 4 { 1 2 4 8 16 { 5 32 1\rightarrow 2\rightarrow 4\rightarrow \begin{cases} 1\rightarrow 2\rightarrow 4 \\ 8\rightarrow 16\rightarrow \begin{cases} 5 \\ 32 \end{cases} \end{cases}

We have three possibilities for a 1 a_1 . Their sum is 4 + 5 + 32 = 41 4+5+32=\boxed{41} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...