SAT1000 - P765

Geometry Level pending

Let A , B A,B be the end points of the major axis of the ellipse C : x 2 3 + y 2 m = 1 C:\dfrac{x^2}{3}+\dfrac{y^2}{m}=1 .

If there exists point M M on the ellipse so that A M B = 2 π 3 \angle AMB = \dfrac{2\pi}{3} , find the range of m m .

These pictures show the two cases:


Have a look at my problem set: SAT 1000 problems

( 0 , 1 ] [ 9 , + ) (0,1] \cup [9,+\infty) ( 0 , 3 ] [ 9 , + ) (0,\sqrt{3}] \cup [9,+\infty) ( 0 , 1 ] [ 4 , + ) (0,1] \cup [4,+\infty) ( 0 , 3 ] [ 4 , + ) (0,\sqrt{3}] \cup [4,+\infty)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Another problem within my reach! Let the position coordinates of M M be ( 3 cos α , m sin α ) (\sqrt 3\cos α,\sqrt m\sin α) . (We must have m > 0 m> 0 ). Then

tan ( 2 π 3 ) = 3 = m 3 ( cot ( α 2 ) + tan ( α 2 ) ) 1 m 3 \tan (\frac{2π}{3})=-\sqrt 3=\dfrac{-\sqrt {\frac{m}{3}}\left (\cot (\frac{α}{2})+\tan (\frac{α}{2})\right )}{1-\frac{m}{3}}

3 m m = cot ( α 2 ) + tan ( α 2 ) 2 \implies \dfrac{3-m}{\sqrt m}=\cot (\frac{α}{2})+\tan (\frac{α}{2})\geq 2

m 2 10 m + 9 0 m 1 \implies m^2-10m+9\geq 0\implies m\leq 1 and m 9 m\geq 9 .

Hence the range of m m is ( 0 , 1 ] [ 9 , + ) (0,1]\cup [9,+\infty) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...