SAT1000 - P767

Geometry Level pending

As shown above, the hyperbola: x 2 a 2 y 2 b 2 = 1 ( a > 0 , b > 0 ) \dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1\ (a>0,b>0) has right focus point F F , right vertex A A .

Line l 1 l_1 passes through F F and it intersects with the hyperbola at point B , C B,C , l 2 l_2 passes through B B and l 2 A C l_2 \perp AC , l 3 l_3 passes through C C and l 2 A B l_2 \perp AB , l 2 , l 3 l_2, l_3 intersects at point D D .

If the distance from D D to line l 1 l_1 is less than a + a 2 + b 2 a+\sqrt{a^2+b^2} , what is the range of the slope of the hyperbola's asymptotes?


Have a look at my problem set: SAT 1000 problems

( 2 , 0 ) ( 0 , 2 ) (-\sqrt{2},0) \cup (0,\sqrt{2}) ( 1 , 0 ) ( 0 , 1 ) (-1,0) \cup (0,1) ( , 1 ) ( 1 , + ) (-\infty,-1) \cup (1,+\infty) ( , 2 ) ( 2 , + ) (-\infty,-\sqrt{2}) \cup (\sqrt{2},+\infty)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Position coordinates of B B are ( a 2 + b 2 , b 2 a ) (\sqrt {a^2+b^2},\frac{b^2}{a}) .

Slope of A C \overline {AC} is b 2 a a 2 + b 2 a 2 -\dfrac{b^2}{a\sqrt {a^2+b^2}-a^2}\implies

slope of B D \overline {BD} is a a 2 + b 2 a 2 b 2 \dfrac{a\sqrt {a^2+b^2}-a^2}{b^2} .

So, the equation of B D \overline {BD} is

y = a a 2 + b 2 a 2 b 2 x a ( a 2 + b 2 ) a 2 a 2 + b 2 b 2 + b 2 a y=\dfrac{a\sqrt {a^2+b^2}-a^2}{b^2}x-\dfrac{a(a^2+b^2)-a^2\sqrt {a^2+b^2}}{b^2}+\dfrac {b^2}{a} .

y y -coordinate of D D is zero. So it's x x -coordinate is

1 a a 2 + b 2 a 2 ( b 4 a 2 ( a 2 + b 2 ) + a 3 a 2 + b 2 a ) -\dfrac {1}{a\sqrt {a^2+b^2}-a^2}\left (\dfrac {b^4-a^2(a^2+b^2)+a^3\sqrt {a^2+b^2}}{a}\right ) .

So, by the given condition,

1 a 2 a 2 + b 2 a 3 ( a 3 a 2 + b 2 + b 4 a 2 ( a 2 + b 2 ) ) < a \dfrac{1}{a^2\sqrt {a^2+b^2}-a^3}\left (a^3\sqrt {a^2+b^2}+b^4-a^2(a^2+b^2)\right ) <a

b 4 a 2 b 2 < 0 b 2 < a 2 b < a \implies b^4-a^2b^2<0\implies b^2<a^2\implies b<a or b > a b>-a .

Hence the slope of the asymptotes of the hyperbola lies in the range ( 1 , 0 ) ( 0 , 1 ) \boxed {(-1,0)\cup (0,1)} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...