SAT1000 - P801

Geometry Level pending

As shown above, the ellipse E E has equation: x 2 16 + y 2 12 = 1 \dfrac{x^2}{16}+\dfrac{y^2}{12}=1 , and point C C is the center of the circle: x 2 + y 2 4 x + 2 = 0 x^2+y^2-4x+2=0 If P P is a point on ellipse E E , l 1 , l 2 l_1, l_2 both pass through P P and they are both tangent to circle C C , and the product of the slope of l 1 , l 2 l_1, l_2 is equal to 1 2 \dfrac{1}{2} , then find the all possible coordinate(s) of point P P .

How to submit:

  • First, find the number of all possible solutions. Let N N denote the number of solutions.

  • Then Sort the solutions by x-coordinate from smallest to largest, if the x-coordinate is the same, then sort by y-coordinate from smallest to largest.

  • Let the sorted solutions be: ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) , , ( x N , y N ) (x_1,y_1), (x_2,y_2), (x_3,y_3), \cdots ,(x_N,y_N) , then M = k = 1 N k ( x k + y k ) M=\displaystyle \sum_{k=1}^N k(x_k+y_k) .

For instance, if the solution is: ( 1 , 2 ) , ( 1 , 1 ) , ( 1 , 3 ) , ( 0 , 4 ) (-1,2), (-1,1), (1,3), (0,4)

Then the sorted solution will be: ( 1 , 1 ) , ( 1 , 2 ) , ( 0 , 4 ) , ( 1 , 3 ) (-1,1), (-1,2), (0,4), (1,3)

Then N = 4 N=4 , M = k = 1 4 k ( x k + y k ) = 1 × ( 1 + 1 ) + 2 × ( 1 + 2 ) + 3 × ( 0 + 4 ) + 4 × ( 1 + 3 ) = 30 M=\displaystyle \sum_{k=1}^4 k(x_k+y_k)= 1 \times (-1+1) + 2 \times (-1+2) + 3 \times (0+4) + 4 \times (1+3) =30 .

For this problem, submit 1000 ( M + N ) \lfloor 1000(M+N) \rfloor .


Have a look at my problem set: SAT 1000 problems


The answer is 27709.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Circle is X 2 + Y 2 = 2 X^2+Y^2=2 , where X = x 2 , Y = y X=x-2,Y=y .

Let the equation of a tangent to the circle from P P be Y = m X + 2 ( 1 + m 2 ) Y=mX+\sqrt {2(1+m^2)} . Then

m 2 ( X 2 2 ) 2 m X Y + ( Y 2 2 ) = 0 m^2(X^2-2)-2mXY+(Y^2-2)=0 .

From the given condition, the product of the two roots of this equation for m m is 1 2 \dfrac {1}{2} .

So 2 Y 2 X 2 = 2 2Y^2-X^2=2 .

Substituting values of X , Y X, Y and simplifying we get 5 x 2 8 x 36 = 0 5x^2-8x-36=0 .

Therefore, x 1 = 2 , y 1 = 3 , x 2 = 2 , y 2 = 3 , x 3 = 3.6 , y 3 1.5099 , x 4 = 3.6 , y 4 1.5099 , N = 4 x_1=-2,y_1=-3,x_2=-2,y_2=3,x_3=3.6, y_3\approx -1.5099,x_4=3.6,y_4\approx 1.5099,N=4 ,

M = k = 1 4 k ( x k + y k ) 23.7096 , M + N 27.7096 M=\displaystyle \sum_{k=1}^4 k(x_k+y_k)\approx 23.7096, M+N\approx 27.7096 , and 1000 ( M + N ) = 27709 \lfloor 1000(M+N)\rfloor =\boxed {27709} .

David Vreken
Jun 17, 2020

Let B B and D D be the tangent points, and draw A B C \triangle ABC and A D C \triangle ADC .

Since the equation for circle C C , x 2 + y 2 4 x + 2 = 0 x^2 + y^2 -4x + 2 = 0 , can be rearranged to ( x 2 ) 2 + y 2 = 2 (x - 2)^2 + y^2 = 2 , its center is C ( 2 , 0 ) C(2, 0) and its radius is B C = C D = 2 BC = CD = \sqrt{2} .

Since A B C \triangle ABC and A D C \triangle ADC are congruent by HL congruence, let θ = B A C = D A C \theta = \angle BAC = \angle DAC .

Let the x x -coordinate of A A be p p . Since A A is on the equation x 2 16 + y 2 12 = 1 \frac{x^2}{16} + \frac{y^2}{12} = 1 , its y y -coordinate is 1 2 48 3 p 2 \frac{1}{2}\sqrt{48 - 3p^2} .

The slope of A C AC is m = 1 2 48 3 p 2 p 2 m = \frac{\frac{1}{2}\sqrt{48 - 3p^2}}{p - 2} or m = 48 3 p 2 2 p 4 m = \frac{\sqrt{48 - 3p^2}}{2p - 4} .

By the distance equation, A C = ( p 2 ) 2 + ( 1 2 48 3 p 2 ) 2 = 1 2 p 8 AC = \sqrt{(p - 2)^2 + (\frac{1}{2}\sqrt{48 - 3p^2})^2} = \frac{1}{2}|p - 8| , and by the Pythagorean Theorem, A B = A C 2 B C 2 = ( 1 2 p 8 ) 2 + ( 2 ) 2 = 1 2 p 2 16 p + 56 AB = \sqrt{AC^2 - BC^2} = \sqrt{(\frac{1}{2}|p - 8|)^2 + (\sqrt{2})^2} = \frac{1}{2}\sqrt{p^2 - 16p + 56} . Therefore, tan θ = B C A B = 2 1 2 p 2 16 p + 56 \tan \theta = \frac{BC}{AB} = \frac{\sqrt{2}}{\frac{1}{2}\sqrt{p^2 - 16p + 56}} or tan θ = 2 2 p 2 16 p + 56 \tan \theta = \frac{2\sqrt{2}}{\sqrt{p^2 - 16p + 56}} .

Let m 1 m_1 be the slope of A B AB and m 2 m_2 be the slope of A D AD . From the equation for the angle between two slopes, tan θ = m 1 m 1 + m 1 m \tan \theta = \frac{m_1 - m}{1 + m_1m} and tan θ = m m 2 1 + m m 2 \tan \theta = \frac{m - m_2}{1 + mm_2} . These equations rearrange to m 1 = m + tan θ 1 m tan θ m_1 = \frac{m + \tan \theta}{1 - m\tan \theta} and m 2 = m tan θ 1 + m tan θ m_2 = \frac{m - \tan \theta}{1 + m\tan \theta} .

Since m 1 m 2 = 1 2 m_1m_2 = \frac{1}{2} , ( m + tan θ 1 m tan θ ) ( m tan θ 1 + m tan θ ) = 1 2 (\frac{m + \tan \theta}{1 - m\tan \theta})(\frac{m - \tan \theta}{1 + m\tan \theta}) = \frac{1}{2} or m 2 tan 2 θ 1 m 2 tan 2 θ = 1 2 \frac{m^2 - \tan^2 \theta}{1 - m^2\tan^2 \theta} = \frac{1}{2} . Substituting m = 48 3 p 2 2 p 4 m = \frac{\sqrt{48 - 3p^2}}{2p - 4} and tan θ = 2 2 p 2 16 p + 56 \tan \theta = \frac{2\sqrt{2}}{\sqrt{p^2 - 16p + 56}} and simplifying gives ( p 8 ) 2 ( p + 2 ) ( 5 p 18 ) = 0 (p - 8)^2(p + 2)(5p - 18) = 0 , which solves to p = 2 p = -2 and p = 18 5 p = \frac{18}{5} for 4 < p < 4 -4 < p < 4 .

Each p p -value has two possible y y -coordinate values for the ellipse, for a total of N = 4 N = 4 possible solutions. Using y = ± 1 2 48 3 x 2 y = \pm \frac{1}{2}\sqrt{48 - 3x^2} , the possible coordinates for A A are ( 2 , 3 ) (-2, -3) , ( 2 , 3 ) (-2, 3) , ( 18 5 , 57 5 ) (\frac{18}{5}, -\frac{\sqrt{57}}{5}) , and ( 18 5 , 57 5 ) (\frac{18}{5}, \frac{\sqrt{57}}{5}) .

Therefore, M = 1 ( 2 + 3 ) + 2 ( 2 + 3 ) + 3 ( 18 5 + 57 5 ) + 4 ( 18 5 + 57 5 ) = 111 + 57 5 M = 1(-2 + -3) + 2(-2 + 3) + 3(\frac{18}{5} + -\frac{\sqrt{57}}{5}) + 4(\frac{18}{5} + \frac{\sqrt{57}}{5}) = \frac{111 + \sqrt{57}}{5} , M + N = 131 + 57 5 M + N = \frac{131 + \sqrt{57}}{5} , and 1000 ( M + N ) = 27709 \lfloor 1000(M + N) \rfloor = \boxed{27709} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...