SAT1000 - P802

Geometry Level pending

As shown above, the parabola C 1 : x 2 = y C_1: x^2=y , circle C 2 : x 2 + ( y 4 ) 2 = 1 C_2: x^2+{(y-4)}^2=1 , and M M is the center of circle C 2 C_2 .

Point P P is a point on C 1 C_1 (not at ( 0 , 0 ) (0,0) ), and l 1 , l 2 l_1, l_2 are two lines tangent to C 2 C_2 and they intersects with C 1 C_1 at point A , B A,B respectively. Line l l passes through M M and P P .

If l A B l \perp AB , find the equation of line l l .

The equation can be expressed as: y = ± k x + b ( k > 0 ) y=\pm k x+b\ (k>0) . Submit 1000 ( k + b ) \lfloor 1000(k+b) \rfloor .


Have a look at my problem set: SAT 1000 problems


The answer is 4279.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Jun 20, 2020

Let D D be the point of tangency to the circle on A P AP , and E E be the point of tangency to the circle on B P BP .

Since P P is on the parabola x 2 = y x^2 = y , let its coordinates be P ( p , p 2 ) P(p, p^2) . Since M M is the center of circle x 2 + ( y 4 ) 2 = 1 x^2 + (y - 4)^2 = 1 , its coordinates are M ( 0 , 4 ) M(0, 4) and the radius is D M = E M = 1 DM = EM = 1 .

The slope of M P MP is then m M P = p 2 4 p m_{MP} = \frac{p^2 - 4}{p} , and the distance M P MP is d = p 2 + ( p 2 4 ) 2 = p 4 7 p 2 + 16 d = \sqrt{p^2 + (p^2 - 4)^2} = \sqrt{p^4 - 7p^2 + 16} .

By the Pythagorean Theorem on D M P \triangle DMP , D P = M P 2 D M 2 = ( p 4 7 p 2 + 16 ) 2 + 1 2 = p 4 7 p 2 + 15 DP = \sqrt{MP^2 - DM^2} = \sqrt{(\sqrt{p^4 - 7p^2 + 16})^2 + 1^2} = \sqrt{p^4 - 7p^2 + 15} . Let θ = D P M = E P M \theta = \angle DPM = \angle EPM . Then tan θ = D M D P = 1 p 4 7 p 2 + 15 \tan \theta = \frac{DM}{DP} = \frac{1}{\sqrt{p^4 - 7p^2 + 15}} .

By the angle between two slopes equation, tan θ = m A P m M P 1 + m A P m M P \tan \theta = \frac{m_{AP} - m_{MP}}{1 + m_{AP}m_{MP}} and tan θ = m M P m B P 1 + m M P m B P \tan \theta = \frac{m_{MP} - m_{BP}}{1 + m_{MP}m_{BP}} . Substituting m M P = p 2 4 p m_{MP} = \frac{p^2 - 4}{p} and tan θ = 1 p 4 7 p 2 + 15 \tan \theta = \frac{1}{\sqrt{p^4 - 7p^2 + 15}} and solving gives m A P = ( p 2 4 ) p 4 7 p 2 + 15 + p p p 4 7 p 2 + 15 ( p 2 4 ) m_{AP} = \frac{(p^2 - 4)\sqrt{p^4 - 7p^2 + 15} + p}{p\sqrt{p^4 - 7p^2 + 15} - (p^2 - 4)} and m B P = ( p 2 4 ) p 4 7 p 2 + 15 p p p 4 7 p 2 + 15 + ( p 2 4 ) m_{BP} = \frac{(p^2 - 4)\sqrt{p^4 - 7p^2 + 15} - p}{p\sqrt{p^4 - 7p^2 + 15} + (p^2 - 4)} .

The equation of line A P AP is y = m A P ( x p ) + p 2 y = m_{AP}(x - p) + p^2 and the equation of line B P BP is y = m B P ( x p ) + p 2 y = m_{BP}(x - p) + p^2 . Both A A and B B are also on x 2 = y x^2 = y , and these equations solve to A ( p 4 7 p 2 + 15 3 p p 2 1 , p 4 + 2 p 2 + 15 6 p p 4 7 p 2 + 15 ( p 2 1 ) 2 ) A(\frac{\sqrt{p^4 - 7p^2 + 15} - 3p}{p^2 - 1}, \frac{p^4 + 2p^2 + 15 - 6p\sqrt{p^4 - 7p^2 + 15}}{(p^2 - 1)^2}) and B ( p 4 7 p 2 + 15 + 3 p p 2 1 , p 4 + 2 p 2 + 15 + 6 p p 4 7 p 2 + 15 ( p 2 1 ) 2 ) B(\frac{\sqrt{p^4 - 7p^2 + 15} + 3p}{p^2 - 1}, \frac{p^4 + 2p^2 + 15 + 6p\sqrt{p^4 - 7p^2 + 15}}{(p^2 - 1)^2}) .

The slope of A B AB is then m A B = B y A y B x A x = 6 p p 2 1 m_{AB} = \frac{B_y - A_y}{B_x - A_x} = \frac{-6p}{p^2 - 1} . Since M P A B , m M P m A B = 1 MP \perp AB, m_{MP}m_{AB} = -1 or p 2 4 p 6 p p 2 1 = 1 \frac{p^2 - 4}{p}\frac{-6p}{p^2 - 1} = -1 , which solves to p = ± 115 5 p = \pm \frac{\sqrt{115}}{5} .

That means m M P = p 2 4 p = ( ± 115 5 ) 2 4 ± 115 5 = ± 3 115 115 m_{MP} = \frac{p^2 - 4}{p} = \frac{(\pm \frac{\sqrt{115}}{5})^2 - 4}{\pm \frac{\sqrt{115}}{5}} = \pm \frac{3\sqrt{115}}{115} , so that the line l l has an equation of y = ± 3 115 115 x + 4 y = \pm \frac{3\sqrt{115}}{115}x + 4 , so k = 3 115 115 k = \frac{3\sqrt{115}}{115} , b = 4 b = 4 , and 1000 ( k + b ) = 4279 \lfloor 1000(k + b) \rfloor = \boxed{4279} .

Let the position coordinates of P P be ( t , t 2 ) (t, t^2) . Then the slopes m 1 , m 2 m_1,m_2 of the tangents to the circle from P P are

t ( t 2 4 ) ± t 4 7 t 2 + 15 t 2 1 \dfrac{t(t^2-4)\pm \sqrt {t^4-7t^2+15}}{t^2-1}

Points A , B A, B will have position coordinates ( m 1 t , ( m 1 t ) 2 ) (m_1-t,(m_1-t)^2) and ( m 2 t , ( m 2 t ) 2 ) (m_2-t,(m_2-t)^2) .

Let the mid point of A B \overline {AB} be D ( m 1 + m 2 2 t 2 , ( m 1 t ) 2 + ( m 2 t ) 2 2 ) D(\frac{m_1+m_2-2t}{2},\frac{(m_1-t)^2+(m_2-t)^2}{2}) .

Then t 2 t 4 + 2 t 2 + 15 ( t 2 1 ) 2 = t ( t 2 1 ) 6 t + 1 2 5 t 6 18 t 4 3 t 2 92 = 0 t^2-\dfrac{t^4+2t^2+15}{(t^2-1)^2}=\dfrac{t(t^2-1)}{6t}+\dfrac{1}{2}\implies 5t^6-18t^4-3t^2-92=0 .

There are two real solutions to this equation : t ± 2.145 t\approx \pm 2.145 .

Hence the equation of P D \overline {PD} is

y = t 2 1 6 t x + t 4 + 2 t 2 + 15 ( t 2 1 ) 2 + 1 2 = 4 ± 0.2797 x y=\dfrac {t^2-1}{6t}x+\dfrac{t^4+2t^2+15}{(t^2-1)^2}+\dfrac{1}{2}=4\pm 0.2797x .

So, k = 4 , b = 0.2797 , k + b = 4.2797 k=4,b=0.2797, k+b=4.2797 and 1000 ( k + b ) = 4729 \lfloor 1000(k+b)\rfloor =\boxed {4729} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...