SAT1000 - P807

Algebra Level pending

As shown above, parabola C C has equation: y 2 = 4 x y^2=4x and its focus is F F .

Line l 1 , l 2 l_1, l_2 both passes through F F , l 1 l_1 intersects with C C at A , B A,B , l 2 l_2 intersects with C C at D , E D,E , l 1 l 2 l_1 \perp l_2 .

Then find the minimum value of A D E B \overrightarrow{AD} \cdot \overrightarrow{EB} .

Let M M be the minimum value. Submit 1000 M \lfloor 1000M \rfloor .


Have a look at my problem set: SAT 1000 problems


The answer is 16000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Jun 20, 2020

Let the slope of A B AB be m m . Since it goes through the focus at F ( 1 , 0 ) F(1, 0) , the line A B AB has the equation y = m ( x 1 ) y = m(x - 1) , and since A B AB is perpendicular to D E DE at F F , the line D E DE has the equation y = 1 m ( x 1 ) y = -\frac{1}{m}(x - 1) .

The intersection points of these lines with the parabola y 2 = 4 x y^2 = 4x are A ( ( 1 + m 2 + 1 m ) 2 , 2 ( 1 + m 2 + 1 m ) ) A((\frac{1 + \sqrt{m^2 + 1}}{m})^2, 2(\frac{1 + \sqrt{m^2 + 1}}{m})) , B ( ( 1 m 2 + 1 m ) 2 , 2 ( 1 m 2 + 1 m ) ) B((\frac{1 - \sqrt{m^2 + 1}}{m})^2, 2(\frac{1 - \sqrt{m^2 + 1}}{m})) , D ( ( m m 2 + 1 ) 2 , 2 ( m m 2 + 1 ) ) D((m - \sqrt{m^2 + 1})^2, -2(m - \sqrt{m^2 + 1})) , and E ( ( m + m 2 + 1 ) 2 , 2 ( m + m 2 + 1 ) ) E((m + \sqrt{m^2 + 1})^2, -2(m + \sqrt{m^2 + 1})) .

A D E B = ( D x A x ) ( B x E x ) + ( D y A y ) ( B y E y ) \overrightarrow{AD} \cdot \overrightarrow{EB} = (D_x - A_x)(B_x - E_x) + (D_y - A_y)(B_y - E_y) , which simplifies to A D E B = 4 ( m 2 + 1 ) 2 m 2 \overrightarrow{AD} \cdot \overrightarrow{EB} = \frac{4(m^2 + 1)^2}{m^2} .

By the AM-GM inequality, the terms m 2 m^2 and 1 1 have the relation m 2 + 1 2 m 2 1 \frac{m^2 + 1}{2} \geq \sqrt{m^2 \cdot 1} , which can be rearranged to 4 ( m 2 + 1 ) 2 m 2 16 \frac{4(m^2 + 1)^2}{m^2} \geq 16 or A D E B 16 \overrightarrow{AD} \cdot \overrightarrow{EB} \geq 16 .

Therefore, the minimum value of A D E B \overrightarrow{AD} \cdot \overrightarrow{EB} is M = 16 M = 16 , and 1000 M = 16000 . \lfloor 1000M \rfloor = \boxed{16000}.

Let the position coordinates of A , B , D , E A, B, D, E be ( t 2 , 2 t ) , ( 1 t 2 , 2 t ) , ( t 1 2 , 2 t 1 ) , ( 1 t 1 2 , 2 t 1 ) (t^2,2t),(\frac{1}{t^2},-\frac{2}{t}),(t_1^2,2t_1),(\frac{1}{t_1^2},-\frac{2}{t_1}) respectively. Then

A D = ( t 1 t ) ( i ^ ( t 1 + t ) + 2 j ^ ) \vec {AD}=(t_1-t)\left (\hat i(t_1+t)+2\hat j\right )

E B = ( 1 t 1 t 1 ) ( i ^ ( 1 t 1 + 1 t ) 2 j ^ ) \vec {EB}=(\frac{1}{t}-\frac{1}{t_1})\left (\hat i(\frac{1}{t_1}+\frac{1}{t})-2\hat j\right )

A D . E B = ( ( t 1 t ) 2 t t 1 ) 2 \implies \vec {AD}.\vec {EB}=\left (\frac{(t_1-t)^2}{tt_1}\right ) ^2

Now, t 1 = t 1 t + 1 t_1=\frac{t-1}{t+1} , or t + 1 t 1 -\frac{t+1}{t-1} . (since A B \overline {AB} and D E \overline {DE} are mutually perpendicular).

So A D . E B = ( t 4 + 2 t 2 + 1 t 3 t ) 2 \vec {AD}.\vec {EB}=(\frac{t^4+2t^2+1}{t^3-t})^2 .

This will be minimum when t 6 5 t 4 5 t 2 + 1 = 0 t^6-5t^4-5t^2+1=0 , the minimum value being 4 2 = 16 4^2=16 . Therefore the required answer is 16000 \boxed {16000} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...