SAT1000 - P810

Geometry Level pending

As shown above, the ellipse C : x 2 4 + y 2 3 = 1 C: \dfrac{x^2}{4}+\dfrac{y^2}{3}=1 , O ( 0 , 0 ) , P ( 2 , 1 ) O(0,0), P(2,1) , line l l intersects with C C at point A , B A,B , and line O P OP bisects segment A B AB .

If the area of A P B \triangle APB reaches the maximum value, then find the equation of line l l .

The equation of the line can be expressed as y = k x + b y=kx+b , submit 1000 ( k + b ) \lfloor 1000(k+b) \rfloor .


Have a look at my problem set: SAT 1000 problems


The answer is -3146.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Jun 22, 2020

Let D D be the intersection of O P OP and A B AB , and since O P OP has an equation of y = 1 2 y = \frac{1}{2} , let its coordinates be D ( p , 1 2 p ) D(p, \frac{1}{2}p) .

Let the slope of A B AB be m m . Then the equation of the line A B AB through D ( p , 1 2 p ) D(p, \frac{1}{2}p) is y = m x m p + 1 2 p y = mx - mp + \frac{1}{2}p , and x x -coordinates of A A and B B at the intersection of y = m x m p + 1 2 p y = mx - mp + \frac{1}{2}p and x 2 4 + y 2 3 = 1 \frac{x^2}{4} + \frac{y^2}{3} = 1 are A x = 4 m 2 p 2 m p ( 12 m 2 + 12 m 3 ) p 2 + 48 m 2 + 36 4 m 2 + 3 A_x = \frac{4m^2p - 2mp - \sqrt{(-12m^2 + 12m - 3)p^2 + 48m^2 + 36}}{4m^2 + 3} and B x = 4 m 2 p 2 m p + ( 12 m 2 + 12 m 3 ) p 2 + 48 m 2 + 36 4 m 2 + 3 B_x = \frac{4m^2p - 2mp + \sqrt{(-12m^2 + 12m - 3)p^2 + 48m^2 + 36}}{4m^2 + 3} .

Since D D is the midpoint of A A and B B , 1 2 ( A x + B x ) = D x \frac{1}{2}(A_x + B_x) = D_x , or 1 2 ( 4 m 2 p 2 m p ( 12 m 2 + 12 m 3 ) p 2 + 48 m 2 + 36 4 m 2 + 3 + 4 m 2 p 2 m p + ( 12 m 2 + 12 m 3 ) p 2 + 48 m 2 + 36 4 m 2 + 3 ) = p \frac{1}{2}(\frac{4m^2p - 2mp - \sqrt{(-12m^2 + 12m - 3)p^2 + 48m^2 + 36}}{4m^2 + 3} + \frac{4m^2p - 2mp + \sqrt{(-12m^2 + 12m - 3)p^2 + 48m^2 + 36}}{4m^2 + 3}) = p , which solves to m = 3 2 m = -\frac{3}{2} .

Substituting m = 3 2 m = -\frac{3}{2} , the coordinates A A and B B simplify to A ( p 1 3 3 p 2 + 9 , 1 2 p + 1 2 3 p 2 + 9 ) A(p - \frac{1}{3}\sqrt{-3p^2 + 9}, \frac{1}{2}p + \frac{1}{2}\sqrt{-3p^2 + 9}) and B ( p + 1 3 3 p 2 + 9 , 1 2 p 1 2 3 p 2 + 9 ) B(p + \frac{1}{3}\sqrt{-3p^2 + 9}, \frac{1}{2}p - \frac{1}{2}\sqrt{-3p^2 + 9}) .

The area of A P B \triangle APB is then A A P B = 1 2 ( ( A x 2 ) ( B y 1 ) ( B x 2 ) ( A y 1 ) ) A_{\triangle APB} = \frac{1}{2}((A_x - 2)(B_y - 1) - (B_x - 2)(A_y - 1)) , which after substituting the above values and simplifying solves to A A P B = 2 3 ( 2 p ) 3 p 2 + 9 A_{\triangle APB} = \frac{2}{3}(2 - p)\sqrt{-3p^2 + 9} .

Since A A P B 0 A''_{\triangle APB} \leq 0 , the area of the triangle reaches a maximum when the derivative is equal to zero, or A A P B = 4 p 2 4 p 6 3 p 2 + 9 = 0 A'_{\triangle APB} = \frac{4p^2 - 4p - 6}{\sqrt{-3p^2 + 9}} = 0 , which solves to p = 1 2 ( 1 7 ) p = \frac{1}{2}(1 - \sqrt{7}) for p < 0 p < 0 .

Therefore, after substituting m = 3 2 m = -\frac{3}{2} and p = 1 2 ( 1 7 ) p = \frac{1}{2}(1 - \sqrt{7}) into the equation of the line A B AB given above as y = m x m p + 1 2 p y = mx - mp + \frac{1}{2}p , it solves to y = 3 2 x + 1 7 y = -\frac{3}{2}x + 1 - \sqrt{7} , so k = 3 2 k = -\frac{3}{2} , b = 1 7 b = 1 - \sqrt{7} , and 1000 ( k + b ) = 3146 \lfloor 1000(k + b) \rfloor = \boxed{-3146} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...