SAT1000 - P811

Geometry Level pending

As shown above, given that ellipse E : x 2 t + y 2 3 = 1 ( t > 3 ) E: \dfrac{x^2}{t}+\dfrac{y^2}{3}=1\ (t>3) , point A A is the left vertex of E E , and line l l whose slope is k ( k > 0 ) k\ (k>0) intersects with E E at point A , M A,M , point N N is a point on E E such that M A N A MA \perp NA .

If 2 A M = A N 2|AM|=|AN| , find the range of k k as t t changes.

If the range can be expressed as ( l , r ) (l,r) , submit 1000 ( 2 r l ) \lfloor 1000(2r-l) \rfloor .


Have a look at my problem set: SAT 1000 problems


The answer is 2740.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Position coordinates of M M and N N are ( t ( 3 t k 2 ) 3 + t k 2 , 6 k t 3 + t k 2 ) (\dfrac{\sqrt t(3-tk^2)}{3+tk^2},\dfrac{6k\sqrt t}{3+tk^2}) and

( t ( 3 k 2 t ) 3 k 2 + t , 6 k t 3 k 2 + t ) (\dfrac{\sqrt t(3k^2-t)}{3k^2+t},-\dfrac{6k\sqrt t}{3k^2+t}) .

The given condition yields k 3 k 2 + t = 2 t k 2 + 3 \dfrac{k}{3k^2+t}=\dfrac{2}{tk^2+3}

t = 3 k ( 2 k 1 ) k 3 2 > 3 \implies t=\dfrac{3k(2k-1)}{k^3-2}>3

2 3 < k < 2 \implies \sqrt[3] 2<k<2 .

So, l = 2 3 1.25992 , r = 2 l=\sqrt[3] 2\approx 1.25992, r=2 and the required answer is 2740 \boxed {2740} .

Solution to this problem :

Let the equation of A B \overline {AB} be y = m x + c y=mx+c

Then 3 x 2 + 4 ( m x + c ) 2 = 12 ( 4 m 3 ) x 2 + 8 m c x + 4 c 2 12 = 0 3x^2+4(mx+c)^2=12\implies (4m^3)x^2+8mcx+4c^2-12=0

If the position coordinates of A A and B B be ( x 1 , y 1 ) (x_1,y_1) and ( x 2 , y 2 ) (x_2,y_2) respectively, then

x 1 + x 2 2 = 4 m c 4 m 2 + 3 , y 1 + y 2 2 = 3 c 4 m 2 + 3 \dfrac{x_1+x_2}{2}=-\dfrac {4mc}{4m^2+3},\dfrac {y_1+y_2}{2}=\dfrac {3c}{4m^2+3} .

Since this point is on the line x = 2 y , 6 c = 4 m c m = 3 2 = 1.5 x=2y, 6c=-4mc\implies m=-\dfrac {3}{2}=-1.5 .

Area of A B P \triangle {ABP} is 1 6 ( 4 c ) 36 3 c 2 \dfrac{1}{6}(4-c)\sqrt {36-3c^2}

This attains a maximum when c 1.64575 m + c 3.14575 c\approx -1.64575\implies m+c\approx -3.14575

Hence 1000 ( m + c ) = 3146 \lfloor 1000(m+c)\rfloor =\boxed {-3146} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...