SAT1000 - P844

Geometry Level pending

As shown above, F ( 1 , 0 ) F(1,0) is the focus of the parabola C : y 2 = 4 x C: y^2=4x , line l : y = k ( x 1 ) l: y=k(x-1) intersects with C C at point A , B A,B , and the perpendicular bisector of A B AB intersects with C C at point M , N M,N .

If A , M , B , N A,M,B,N are on the same circle, then find the value of 1000 k \lfloor 1000|k| \rfloor .


Have a look at my problem set: SAT 1000 problems


The answer is 1000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the position coordinates of A , B , M , N A, B, M, N be ( t 2 , 2 t ) , ( u 2 , 2 u ) , ( p 2 , 2 p ) , ( q 2 , 2 q ) (t^2,2t), (u^2,2u), (p^2,2p), (q^2,2q) respectively. Let the mid point of A B \overline {AB} be G ( g , h ) G(g,h) .

Then,

2 t t 2 1 = k \dfrac {2t}{t^2-1}=k

t = 1 + k 2 + 1 k \implies t=\dfrac {1+\sqrt {k^2+1}}{k} ,

u = 1 k 2 + 1 k u=\dfrac {1-\sqrt {k^2+1}}{k}

g = k 2 + 2 k 2 , h = 2 k \implies g=\dfrac {k^2+2}{k^2}, h=\dfrac {2}{k}

2 p h p 2 g = 1 k \dfrac {2p-h}{p^2-g}=-\dfrac {1}{k}

p = k 4 + 3 k 2 + 2 k 2 k \implies p=\dfrac {\sqrt {k^4+3k^2+2}-k^2}{k} ,

q = k 4 + 3 k 2 + 2 + k 2 k q=-\dfrac {\sqrt {k^4+3k^2+2}+k^2}{k}

So, M G = 2 ( k 2 + 1 ) ( k 2 + 2 k 2 + 1 ) k |\overline {MG}|=\dfrac {2(k^2+1)(\sqrt {k^2+2}-\sqrt {k^2+1})}{k}

G N = 2 ( k 2 + 1 ) ( k 2 + 2 + k 2 + 1 ) k |\overline {GN}|=\dfrac {2(k^2+1)(\sqrt {k^2+2}+\sqrt {k^2+1})}{k}

A G = 2 ( k 2 + 1 ) k 2 |\overline {AG}|=\dfrac {2(k^2+1)}{k^2}

Since the points A , M , B , N A, M, B, N are concyclic, therefore

M G × G N = A G 2 |\overline {MG}|\times |\overline {GN}|=|\overline {AG}|^2

4 ( k 2 + 1 ) 2 k 4 = 4 ( k 2 + 1 ) 2 k 2 \implies \dfrac {4(k^2+1)^2}{k^4}=\dfrac {4(k^2+1)^2}{k^2}

k = 1 \implies |k|=1

Therefore the required answer is 1000 \boxed {1000} .

Solution to this problem :

From the given value of a 1 a_1 and the recurrance relation, we get a 2 n + 1 = F n + 1 F n + 2 a_{2n+1}=\dfrac {F_{n+1}}{F_{n+2}} ,

where F n F_n is the n t h n'^{th} Fibonacci number.

From the relation a 2010 = a 2012 a_{2010}=a_{2012} we get a 2010 = ϕ 1 a_{2010}=\phi -1 , where ϕ = 5 + 1 2 \phi =\dfrac {\sqrt 5+1}{2} is the golden ratio .

Using this we see that a 2 n = ϕ 1 a_{2n}=\phi -1 for all positive integers n n .

So, a 11 = F 6 F 7 = 8 13 , a 20 = ϕ 1 = 5 1 2 a_{11}=\dfrac {F_6}{F_7}=\dfrac {8}{13}, a_{20}=\phi -1=\dfrac {\sqrt 5-1}{2} , and

a 20 + a 11 1.2334186 a_{20}+a_{11}\approx 1.2334186

Hence the required answer is 1233 \boxed {1233} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...