SAT1000 - P845

Geometry Level 4

As shown above, the parabola E : y 2 = x E: y^2=x and circle M : ( x 4 ) 2 + y 2 = r 2 M: (x-4)^2+y^2=r^2 for r > 0 r>0 intersect at points A A , B B , C C , and D D ; and their relative positions are shown in the figure. Lines A C AC and B D BD intersect at point P P .

Find the coordinates ( x 0 , 0 ) (x_0,0) of P P as the area of quadrilateral A B C D ABCD reaches the maximum when r r varies. Submit 1000 x 0 \lfloor 1000x_0 \rfloor .


Have a look at my problem set: SAT 1000 problems


The answer is 1166.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Jun 19, 2020

Let us call the coordinates of A A , B B , C C and D D as ( x A , y A ) (x_A, y_A) , ( x B , y B ) (x_B, y_B) , ( x C , y C ) (x_C, y_C) and ( x D , y D ) (x_D, y_D) , respectively.

To find the y y -values one just substitutes the parabola equation x = y 2 x=y^2 in the circle equation

( y 2 4 ) 2 + y 2 = r 2 \large \displaystyle (y^2-4)^2 + y^2 = r^2

y 4 7 y 2 + ( 16 r 2 ) = 0 \large \displaystyle y^4-7y^2 + (16-r^2) = 0

y 2 = 7 ± 4 r 2 15 2 \large \displaystyle y^2 = \frac{7 \pm \sqrt{4r^2-15}}{2}

So, since x = y 2 x = y^2 , we have:

( x A , y A ) = ( 7 4 r 2 15 2 , 7 4 r 2 15 2 ) \large \displaystyle (x_A,y_A) = \left( \frac{7 - \sqrt{4r^2-15}}{2}, \sqrt{\frac{7 - \sqrt{4r^2-15}}{2}} \right )

( x B , y B ) = ( 7 4 r 2 15 2 , 7 4 r 2 15 2 ) \large \displaystyle (x_B,y_B) = \left( \frac{7 - \sqrt{4r^2-15}}{2}, -\sqrt{\frac{7 - \sqrt{4r^2-15}}{2}} \right )

( x C , y C ) = ( 7 + 4 r 2 15 2 , 7 + 4 r 2 15 2 ) \large \displaystyle (x_C,y_C) = \left( \frac{7 + \sqrt{4r^2-15}}{2}, -\sqrt{\frac{7 + \sqrt{4r^2-15}}{2}} \right )

( x D , y D ) = ( 7 + 4 r 2 15 2 , 7 + 4 r 2 15 2 ) \large \displaystyle (x_D,y_D) = \left( \frac{7 + \sqrt{4r^2-15}}{2}, \sqrt{\frac{7 + \sqrt{4r^2-15}}{2}} \right )

The quadrilateral A B C D ABCD is actually a trapezoid, so its area (which I'll denote by S ) S) will be:

S = 1 2 [ ( y D y C ) + ( y A y B ) ] ( x C x A ) \large \displaystyle S = \frac12 \left [ (y_D-y_C) + (y_A-y_B) \right ] \cdot (x_C - x_A)

S = 1 2 [ 2 7 + 4 r 2 15 2 + 2 7 4 r 2 15 2 ] 4 r 2 15 \large \displaystyle S = \frac12 \left [ 2 \sqrt{\frac{7 + \sqrt{4r^2-15}}{2}} + 2 \sqrt{\frac{7 - \sqrt{4r^2-15}}{2}} \right ] \cdot \sqrt{4r^2-15}

Since S S is an area and, so, always a positive value, maximize S S is the same as maximizing S 2 S^2 , which I'll call T T :

T = S 2 = ( 4 r 2 15 ) ( 7 + 64 4 r 2 ) \large \displaystyle T = S^2 = (4r^2-15) \cdot (7 + \sqrt{64-4r^2} )

Maximizing:

d T d r = 8 r ( 7 + 64 4 r 2 ) ( 4 r 2 15 ) 8 r 2 64 4 r 2 = 0 \large \displaystyle \frac{dT}{dr} = 8r(7 + \sqrt{64-4r^2}) - (4r^2-15) \frac{8r}{2\sqrt{64-4r^2}} = 0

12 r 2 143 = 14 64 4 r 2 \large \displaystyle 12r^2 - 143 = 14 \sqrt{64-4r^2}

Squaring both sides:

144 r 4 + 784 r 2 + 7905 = 0 \large \displaystyle 144r^4 + 784r^2 + 7905 = 0

r 2 = 527 36 \large \displaystyle r^2 = \frac{527}{36} or r 2 = 15 4 \large \displaystyle r^2 = \frac{15}{4}

The condition r 2 = 15 4 r^2 = \frac{15}{4} will actually make S = 0 S = 0 , so it's the minimizing condition. The maximizing condition is, then:

r 2 = 527 36 \color{#20A900} \boxed{\large \displaystyle r^2 = \frac{527}{36} }

We will focus on points B B and D D , because P P is the intersection of B D \overline{BD} with the x x -axis (the same could be made with the line A C \overline{AC} ). So:

( x B , y B ) = ( 21 14 2 6 , 21 14 2 6 ) \large \displaystyle (x_B,y_B) = \left( \frac{21-14\sqrt{2}}{6}, -\sqrt{\frac{21-14\sqrt{2}}{6}} \right )

( x D , y D ) = ( 21 + 14 2 6 , 21 + 14 2 6 ) \large \displaystyle (x_D,y_D) = \left( \frac{21+14\sqrt{2}}{6}, \sqrt{\frac{21+14\sqrt{2}}{6}} \right )

The line B D \overline{BD} has equation:

x = 14 3 y + 7 6 \color{#20A900} \boxed{ \large \displaystyle x = \sqrt{ \frac{14}{3}} y + \frac76 }

Just as a confirmation, points A A and C C have coordinates:

( x A , y A ) = ( 21 14 2 6 , 21 14 2 6 ) \large \displaystyle (x_A,y_A) = \left( \frac{21-14\sqrt{2}}{6}, \sqrt{\frac{21-14\sqrt{2}}{6}} \right )

( x C , y C ) = ( 21 + 14 2 6 , 21 + 14 2 6 ) \large \displaystyle (x_C,y_C) = \left( \frac{21+14\sqrt{2}}{6}, -\sqrt{\frac{21+14\sqrt{2}}{6}} \right )

And the line A C \overline{AC} has equation:

x = 14 3 y + 7 6 \color{#20A900} \boxed{ \large \displaystyle x = - \sqrt{ \frac{14}{3}} y + \frac76 }

So:

x 0 = 7 6 1000 x 0 = 1166 \color{#3D99F6} \large \displaystyle x_0 = \frac76 \rightarrow \boxed{ \large \displaystyle \lfloor 1000 x_0 \rfloor = 1166 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...