SAT1000 - P939

Geometry Level 5

As shown above, the enclosed curve C C is composed of three segments of arcs (solid line) and the circles that the arcs belong to pass through the same point P P , and they have the same radius. If the k k th segment of arc corresponds the center angle α k \alpha_k , where k = 1 , 2 , 3 k=1,2,3 , find the value of:

cos α 1 3 cos α 2 + α 3 3 sin α 1 3 sin α 2 + α 3 3 \cos \dfrac{\alpha_1}{3} \cos \dfrac{\alpha_2+\alpha_3}{3} - \sin \dfrac{\alpha_1}{3} \sin \dfrac{\alpha_2+\alpha_3}{3}

Let A A denote the value. Submit 1000 A \lfloor 1000A \rfloor .


Have a look at my problem set: SAT 1000 problems


The answer is -500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Jul 16, 2020

Label the angles in the diagram as follows:

By the inscribed angle theorem, α 1 = 2 β 1 \alpha_1 = 2\beta_1 , α 2 = 2 β 2 \alpha_2 = 2\beta_2 , and α 3 = 2 β 3 \alpha_3 = 2\beta_3 . Also, β 1 + β 2 + β 3 = 360 ° \beta_1 + \beta_2 + \beta_3 = 360° .

Using the cosine of a sum equation and then substituting the values above,

A = cos ( α 1 3 ) cos ( α 2 + α 3 3 ) sin ( α 1 3 ) sin ( α 2 + α 3 3 ) A = \cos (\frac{\alpha_1}{3}) \cos (\frac{\alpha_2 + \alpha_3}{3}) - \sin (\frac{\alpha_1}{3}) \sin (\frac{\alpha_2 + \alpha_3}{3})

A = cos ( α 1 3 + α 2 + α 3 3 ) A = \cos (\frac{\alpha_1}{3} + \frac{\alpha_2 + \alpha_3}{3})

A = cos ( 1 3 ( α 1 + α 2 + α 3 ) ) A = \cos (\frac{1}{3}(\alpha_1 + \alpha_2 + \alpha_3))

A = cos ( 1 3 ( 2 β 1 + 2 β 2 + 2 β 3 ) ) A = \cos (\frac{1}{3}(2\beta_1 + 2\beta_2 + 2\beta_3))

A = cos ( 2 3 ( β 1 + β 2 + β 3 ) ) A = \cos (\frac{2}{3}(\beta_1 + \beta_2 + \beta_3))

A = cos ( 2 3 360 ° ) A = \cos (\frac{2}{3} \cdot 360°)

A = cos ( 240 ° ) A = \cos (240°)

A = 1 2 A = -\frac{1}{2}

Therefore, 1000 A = 500 \lfloor 1000A \rfloor = \boxed{-500} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...