SAT1000 - P964

Geometry Level 3

Let function f ( x ) = 2 x cos x f(x)=2x - \cos x and { a n } \{a_n\} be an arithmetic sequence whose common difference is π 8 \dfrac{\pi}{8} . If k = 1 5 f ( a k ) = 5 π \displaystyle \sum_{k=1}^{5} f(a_k) = 5\pi , find f 2 ( a 3 ) a 1 a 5 f^2(a_3)-a_1 a_5 .

Let A A denote the answer. Submit 1000 A \lfloor 1000A \rfloor .


Have a look at my problem set: SAT 1000 problems


The answer is 8019.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 17, 2020

k = 1 5 f ( a k ) = 5 π k = 1 5 ( 2 a k cos a k ) = 5 π k = 1 5 2 ( a 1 + π 8 ( k 1 ) ) k = 1 5 cos a k = 5 π 10 a 1 + π 4 k = 1 4 k k = 1 5 cos a k = 5 π 10 a 1 + 5 π 2 k = 1 5 cos a k = 5 π \begin{aligned} \sum_{k=1}^5 f(a_k) & = 5 \pi \\ \sum_{k=1}^5 \left(2 a_k - \cos a_k \right) & = 5 \pi \\ \sum_{k=1}^5 2 \left(a_1 + \frac \pi 8 (k-1)\right) - \sum_{k=1}^5 \cos a_k & = 5 \pi \\ 10a_1 + \frac \pi 4 \sum_{k=1}^4 k - \sum_{k=1}^5 \cos a_k & = 5 \pi \\ 10a_1 + \frac {5\pi}2 - \sum_{k=1}^5 \cos a_k & = 5 \pi \end{aligned}

It is obvious that k = 1 5 cos a k \displaystyle \sum_{k=1}^5 \cos a_k cannot be a multiple of π \pi , therefore k = 1 5 cos a k = 0 \displaystyle \sum_{k=1}^5 \cos a_k = 0 . Then 10 a 1 + 5 π 2 = 5 π a 1 = π 4 10a_1 + \dfrac {5\pi}2 = 5 \pi \implies a_1 = \dfrac \pi 4 . Then

k = 1 5 cos a k = cos a 1 + cos ( a 1 + π 8 ) + cos ( a 1 + π 4 ) + cos ( a 1 + 3 π 8 ) + cos ( a 1 + π 2 ) = cos π 4 + cos 3 π 8 + cos π 2 + cos 5 π 8 + cos 3 π 4 = cos π 4 + cos 3 π 8 + 0 cos 3 π 8 cos π 4 = 0 \begin{aligned} \sum_{k=1}^5 \cos a_k & = \cos a_1 + \cos \left(a_1 + \frac \pi 8 \right) + \cos \left(a_1 + \frac \pi 4 \right) + \cos \left(a_1 + \frac {3\pi}8 \right) + \cos \left(a_1 + \frac \pi 2 \right) \\ & = \cos \frac \pi 4 + \cos \frac {3\pi}8 + \cos \frac \pi 2 + \cos \frac {5\pi}8 + \cos \frac {3\pi}4 \\ & = \cos \frac \pi 4 + \cos \frac {3\pi}8 + 0 - \cos \frac {3\pi}8 - \cos \frac \pi 4 \\ & = 0 \end{aligned}

Therefore a 1 = π 4 a_1 = \dfrac \pi 4 and

A = f 2 ( a 3 ) a 1 a 5 = f ( π 2 ) 2 π 4 3 π 4 = π 2 3 π 2 16 8.019053576 1000 A = 8019 \begin{aligned} A & = f^2 (a_3) -a_1 a_5 \\ & = f\left( \frac \pi 2\right)^2 - \frac \pi 4 \cdot \frac {3\pi}4 \\ & = \pi^2 - \frac {3\pi^2}{16} \approx 8.019053576 \\ \implies \lfloor 1000 A \rfloor & = \boxed{8019} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...