SAT1000 - P965

Geometry Level 5

In an acute A B C \triangle ABC , tan A = 1 2 \tan A = \dfrac{1}{2} , D D is a point on B C BC , [ A B D ] = 2 , [ A C D ] = 4 [ABD]=2, [ACD]=4 .

If E , F E,F are points on A B , A C AB, AC respectively, and D E A B , D F A C DE \perp AB, DF \perp AC , then find the value of D E D F \overrightarrow{DE} \cdot \overrightarrow{DF} .

Let A A denote the answer. Submit 1000 A \lfloor 1000A \rfloor .


Have a look at my problem set: SAT 1000 problems


The answer is -1067.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

tan A = 1 2 sin A = 1 5 \tan A=\dfrac 12\implies \sin A=\dfrac {1}{\sqrt 5} ,

cos A = 2 5 \cos A=\dfrac {2}{\sqrt 5}

A B × D E = 4 , A C × D F = 8 |\overline {AB}|\times |\overline {DE}|=4,|\overline {AC}|\times |\overline {DF}|=8

A B × A C × sin A = 12 |\overline {AB}|\times |\overline {AC}|\times \sin A=12

A B × A C = 12 5 \implies |\overline {AB}|\times |\overline {AC}|=12\sqrt 5

So, D E × D F = 4 × 8 12 5 = 8 3 5 |\overline {DE}|\times |\overline {DF}|=\dfrac {4\times 8}{12\sqrt 5}=\dfrac {8}{3\sqrt 5}

So, D E . D F = D E × D F × cos ( π A ) = 8 3 5 × 2 5 = 16 15 \vec {DE}.\vec {DF}=|\overline {DE}|\times |\overline {DF}|\times \cos (π-A) =-\dfrac {8}{3\sqrt 5}\times \dfrac {2}{\sqrt 5}=-\dfrac {16}{15} .

Hence the required answer is

1000 × 16 15 = 1067 \lfloor -1000\times \dfrac {16}{15}\rfloor =\boxed {-1067} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...