Find the second Fourier coefficient for the sawtooth wave , which takes values on and is periodic outside this domain.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Fourier Series
The Fourier coefficients are defined by the integral:
b k = T 2 ∫ 0 T f ( x ) sin ( T 2 π k x ) d x
Here we want k = 2 , with T = 2 and f ( x ) = 2 x . The integral to compute is thus (using integration by parts):
b 2 = ∫ 0 2 2 x sin ( 2 π x ) d x = − 4 π x cos ( 2 π x ) ∣ ∣ 0 2 + 4 π 1 ∫ 0 2 cos ( 2 π x ) d x = − 4 π 2 = − 2 π 1 ,
as claimed, since the last integral vanishes.