Scalene Simplifying

Geometry Level 3

If A A , B B , and C C are the angles of a scalene triangle, simplify

sin A cos B cos C + sin B cos C cos A + sin C cos A cos B \sin A \cos B \cos C + \sin B \cos C \cos A + \sin C \cos A \cos B

3 sin A cos 2 B 3 \sin A \cos^2 B sin A sin B sin C \sin A \sin B \sin C 3 sin A 3 sin A sin 2 B 3 \sin A - 3 \sin A \sin^2 B 3 3 cos A cos B cos C 3 \sqrt{3} \cos A \cos B \cos C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Jul 17, 2019

First,

sin C \sin C

= sin ( 180 ° ( A + B ) ) = \sin(180° - (A + B))

= sin ( A + B ) = \sin(A + B)

= sin A cos B + sin B cos A = \sin A \cos B + \sin B \cos A

Second,

cos C \cos C

= cos ( 180 ° ( A + B ) ) = \cos(180° - (A + B))

= cos ( A + B ) = -\cos(A + B)

= cos A cos B + sin A sin B = -\cos A \cos B + \sin A \sin B .

Therefore,

sin A cos B cos C + sin B cos C cos A + sin C cos A cos B \sin A \cos B \cos C + \sin B \cos C \cos A + \sin C \cos A \cos B

= cos C ( sin A cos B + sin B cos A ) + sin C cos A cos B = \cos C (\sin A \cos B + \sin B \cos A) + \sin C \cos A \cos B

= cos C ( sin C ) + sin C cos A cos B = \cos C (\sin C) + \sin C \cos A \cos B

= sin C ( cos C + cos A cos B ) = \sin C (\cos C + \cos A \cos B)

= sin C ( ( cos A cos B + sin A sin B ) + cos A cos B ) = \sin C ((-\cos A \cos B + \sin A \sin B) + \cos A \cos B)

= sin C ( sin A sin B ) = \sin C (\sin A \sin B)

= sin A sin B sin C = \boxed{\sin A \sin B \sin C}

The given expression equals SinAcosBcosC+CosA(SinBCosC+CosBSinC)=SinA(CosBCosC+CosA)=SinASinBSinC

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...