SCARY BUT EASY

Algebra Level 5

If

Δ = 1 z 1 z ( x + y ) z 2 ( y + z ) x 2 1 x 1 x y ( y + z ) x 2 z ( x + 2 y + z ) x z y ( x + y ) x z 2 \Delta=\huge{\left| \begin{matrix} \frac { 1 }{ z } & \frac { 1 }{ z } & \frac { -(x+y) }{ { z }^{ 2 } } \\ \frac { -(y+z) }{ { x }^{ 2 } } & \frac { 1 }{ x } & \frac { 1 }{ x } \\ \frac { -y(y+z) }{ { x }^{ 2 }z } & \frac { (x+2y+z) }{ xz } & \frac { -y(x+y) }{ x{ z }^{ 2 } } \end{matrix} \right| }

then Δ \Delta is

FOR more problems see here

dependent of s i n ( c o t 1 ( t a n ( c o s 1 ( x ) ) ) ) , y , z sin(cot^{-1}(tan(cos^{-1}(x)))),y,z independent of s i n ( c o t 1 ( t a n ( c o s 1 ( x ) ) ) ) , y , z sin(cot^{-1}(tan(cos^{-1}(x)))),y,z independent of z z independent of s i n ( c o t 1 ( t a n ( c o s 1 ( x ) ) ) ) , y sin(cot^{-1}(tan(cos^{-1}(x)))),y independent of y , z y,z

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aastik Guru
Jun 11, 2020

Good problem @Tanishq Varshney The trick here is to multiply 1st row and 1st column by x x ,2nd row and 2nd column by y y and third row and third column by z z . Now simply add C 1 + C 2 + C 3 C1+C2+C3 to get the final answer as zero.

Hi there, Aastik Guru. That is a marvelous trick! I did it the long way and got ( x y 2 + y 2 z + y z 2 y 2 y z ) / ( x 3 y 3 ) (xy^2+y^2z+yz^2-y^2-yz)/(x^3y^3) as the determinant. I guess I made a mistake. :(

James Wilson - 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...