Add 'Til You Reach \infty

Calculus Level 5

1 2 π sin π 3 0 d x x 2 + x + 1 3 π sin π 4 0 d x x 3 + x 3 + 1 4 π sin π 5 0 d x x 4 + x 4 + = A B \frac{1}{2\pi}\sin{\frac{\pi}{3}}\int_{0}^{\infty} \frac{dx}{x^2+\sqrt{x}}+\frac{1}{3\pi}\sin{\frac{\pi}{4}}\int_{0}^{\infty} \frac{dx}{x^3+\sqrt[3]{x}}+\frac{1}{4\pi}\sin{\frac{\pi}{5}}\int_{0}^{\infty} \frac{dx}{x^4+\sqrt[4]{x}}+\cdots=\frac{A}{B}

The equation above holds true for coprime positive integers A A and B B . Find A B AB .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Patrick Corn
Jan 11, 2018

The key integral is 0 d x x n + x 1 / n = n π n 2 1 csc ( π n + 1 ) . \int_0^\infty \frac{dx}{x^n + x^{1/n}} = \frac{n\pi}{n^2-1} \csc\left( \frac{\pi}{n+1} \right). This can be proved by contour integration--I edited my answer to give the details below.

Then the sum is n = 2 1 n π sin ( π n + 1 ) n π n 2 1 csc ( π n + 1 ) = n = 2 1 n 2 1 = n = 2 ( 1 / 2 n 1 1 / 2 n + 1 ) = ( 1 2 1 6 ) + ( 1 4 1 8 ) + ( 1 6 1 10 ) + = 1 2 + 1 4 = 3 4 \begin{aligned} \sum_{n=2}^\infty \frac1{n\pi} \sin\left( \frac{\pi}{n+1} \right) \frac{n\pi}{n^2-1} \csc\left( \frac{\pi}{n+1} \right) &= \sum_{n=2}^\infty \frac1{n^2-1} \\ &= \sum_{n=2}^\infty \left( \frac{1/2}{n-1} - \frac{1/2}{n+1} \right) \\ &= \left( \frac12 - \frac16 \right) + \left( \frac14 - \frac18 \right) + \left( \frac16 - \frac1{10} \right) + \cdots \\ &= \frac12 + \frac14 = \frac34 \end{aligned} (the series telescopes ), so the answer is 12 . \fbox{12}.

Edit: here is the derivation of the integral formula. First make the substitution u = z 1 / n u = z^{1/n} to change the integral to 0 n u n 2 d u u n 2 1 + 1 . \int_0^\infty \frac{n u^{n-2} \, du}{u^{n^2-1} + 1}.

Let ζ = exp ( π i / ( n 2 1 ) ) , \zeta = \text{exp}(\pi i/(n^2-1)), so ζ \zeta is a primitive 2 ( n 2 1 ) 2(n^2-1) th root of unity. The poles of n u n 2 u n 2 1 + 1 \frac{n u^{n-2}}{u^{n^2-1} + 1} are the odd powers of ζ . \zeta. Consider the pie-slice-shaped contour cut out by the two rays R 1 , R 2 R_1, R_2 given by y = 0 , 0 x N y=0, 0 \le x \le N and y = ζ 2 x , 0 x M y = \zeta^2 x, 0 \le x \le M (where M M is chosen so the ray has length N N ) and the circular arc connecting them. The integral over the arc goes to zero as N N gets large, so we have, by the residue theorem, 2 π i Res u = ζ n u n 2 u n 2 1 + 1 = 0 n u n 2 d u u n 2 1 + 1 0 n ( ζ 2 v ) n 2 ζ 2 d v v n 2 1 + 1 2 π i n ζ n 2 ( n 2 1 ) ζ n 2 2 = I ζ 2 n 2 I \begin{aligned} 2\pi i \text{Res}_{u=\zeta} \frac{nu^{n-2}}{u^{n^2-1}+1} &= \int_0^\infty \frac{n u^{n-2} \, du}{u^{n^2-1} + 1} - \int_0^{\infty} \frac{n(\zeta^2 v)^{n-2} \zeta^2 \, dv}{v^{n^2-1}+1} \\ 2\pi i \frac{n\zeta^{n-2}}{(n^2-1)\zeta^{n^2-2}} &= I - \zeta^{2n-2} I \end{aligned} where I I is the integral we want. So I = 2 π i n n 2 1 ζ n n 2 1 ζ 2 n 2 = 2 π i n n 2 1 ζ n 1 ζ 1 n 2 1 ζ 2 n 2 = 2 π i n n 2 1 ζ n 1 ζ 2 n 2 1 I = \frac{2\pi i n}{n^2-1} \frac{\zeta^{n-n^2}}{1-\zeta^{2n-2}} = \frac{2\pi i n}{n^2-1} \frac{\zeta^{n-1}\zeta^{1-n^2}}{1-\zeta^{2n-2}} = \frac{2\pi i n}{n^2-1} \frac{\zeta^{n-1}}{\zeta^{2n-2}-1} because ζ 1 n 2 = 1. \zeta^{1-n^2} = -1. This gives I = 2 π i n n 2 1 1 ζ n 1 ζ ( n 1 ) = 2 π i n n 2 1 1 2 i sin ( 2 π ( n 1 ) 2 ( n 2 1 ) ) = π n n 2 1 csc ( π n + 1 ) I = \frac{2\pi i n}{n^2-1} \frac1{\zeta^{n-1} - \zeta^{-(n-1)}} = \frac{2\pi i n}{n^2-1} \frac1{2i \sin\left(\frac{2\pi(n-1)}{2(n^2-1)}\right)} = \frac{\pi n}{n^2-1} \csc\left( \frac{\pi}{n+1} \right) as desired.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...