2 π 1 sin 3 π ∫ 0 ∞ x 2 + x d x + 3 π 1 sin 4 π ∫ 0 ∞ x 3 + 3 x d x + 4 π 1 sin 5 π ∫ 0 ∞ x 4 + 4 x d x + ⋯ = B A
The equation above holds true for coprime positive integers A and B . Find A B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
The key integral is ∫ 0 ∞ x n + x 1 / n d x = n 2 − 1 n π csc ( n + 1 π ) . This can be proved by contour integration--I edited my answer to give the details below.
Then the sum is n = 2 ∑ ∞ n π 1 sin ( n + 1 π ) n 2 − 1 n π csc ( n + 1 π ) = n = 2 ∑ ∞ n 2 − 1 1 = n = 2 ∑ ∞ ( n − 1 1 / 2 − n + 1 1 / 2 ) = ( 2 1 − 6 1 ) + ( 4 1 − 8 1 ) + ( 6 1 − 1 0 1 ) + ⋯ = 2 1 + 4 1 = 4 3 (the series telescopes ), so the answer is 1 2 .
Edit: here is the derivation of the integral formula. First make the substitution u = z 1 / n to change the integral to ∫ 0 ∞ u n 2 − 1 + 1 n u n − 2 d u .
Let ζ = exp ( π i / ( n 2 − 1 ) ) , so ζ is a primitive 2 ( n 2 − 1 ) th root of unity. The poles of u n 2 − 1 + 1 n u n − 2 are the odd powers of ζ . Consider the pie-slice-shaped contour cut out by the two rays R 1 , R 2 given by y = 0 , 0 ≤ x ≤ N and y = ζ 2 x , 0 ≤ x ≤ M (where M is chosen so the ray has length N ) and the circular arc connecting them. The integral over the arc goes to zero as N gets large, so we have, by the residue theorem, 2 π i Res u = ζ u n 2 − 1 + 1 n u n − 2 2 π i ( n 2 − 1 ) ζ n 2 − 2 n ζ n − 2 = ∫ 0 ∞ u n 2 − 1 + 1 n u n − 2 d u − ∫ 0 ∞ v n 2 − 1 + 1 n ( ζ 2 v ) n − 2 ζ 2 d v = I − ζ 2 n − 2 I where I is the integral we want. So I = n 2 − 1 2 π i n 1 − ζ 2 n − 2 ζ n − n 2 = n 2 − 1 2 π i n 1 − ζ 2 n − 2 ζ n − 1 ζ 1 − n 2 = n 2 − 1 2 π i n ζ 2 n − 2 − 1 ζ n − 1 because ζ 1 − n 2 = − 1 . This gives I = n 2 − 1 2 π i n ζ n − 1 − ζ − ( n − 1 ) 1 = n 2 − 1 2 π i n 2 i sin ( 2 ( n 2 − 1 ) 2 π ( n − 1 ) ) 1 = n 2 − 1 π n csc ( n + 1 π ) as desired.