Scary Limit

Calculus Level 4

φ = lim x 0 α α 2 x 2 x 2 4 x 4 , α > 0 \large\varphi = \displaystyle\lim_{x\rightarrow 0} \dfrac{\alpha - \sqrt{\alpha^2 - x^2} - \dfrac{x^2}{4}}{x^4}, \quad \alpha >0

If φ \varphi is finite , then find the value of φ + α \varphi + \alpha correct up to 4 decimal places.


The answer is 2.0156.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jaswinder Singh
Sep 29, 2015

differentiate the numerator and denominator .....at last for the limit to exist and to differentiate one more we will have to take α \alpha as 2... at the end we obtain a constant as x is eliminated in the expression of limit.. we get 0.01041 add 2 to it

Aritra Jana
Oct 21, 2015

We use binomial expansion to simplify the given expression: \text{We use binomial expansion to simplify the given expression:}

φ = lim x 0 α α 1 x 2 α 2 x 2 4 x 4 = lim x 0 α α + α 1 2 x 2 α 2 α 1 2 ( 1 2 1 ) x 4 α 4 + Ψ ( x ) x 2 4 x 4 \large\varphi= \displaystyle\lim_{x\to 0}\dfrac{\alpha - \alpha\sqrt{1-\frac{x^{2}}{\alpha^{2}}}-\frac{x^{2}}{4}}{x^{4}} = \displaystyle\lim_{x\to 0}\dfrac{\alpha - \alpha + \alpha\frac{1}{2}\frac{x^{2}}{\alpha^{2}} - \alpha\frac{1}{2}(\frac{1}{2}-1)\frac{x^{4}}{\alpha^{4}}+\Psi(x) - \frac{x^{2}}{4}}{x^{4}}

Where Ψ ( x ) is a polynomial in x with all the exponents greater than 4. \text{Where }\Psi(x) \text{ is a polynomial in x with all the exponents greater than 4.}

Thus, when we take out Ψ ( x ) by distributive law of division, we will get a function in x \text{Thus, when we take out }\Psi(x)\text{ by distributive law of division, we will get a function in x}

(an infinitesimal of order greater than 2), which will ultimately amount to 0 as the limit is applied. \text{(an infinitesimal of order greater than 2), which will ultimately amount to 0 as the limit is applied.}

we basically have to evaluate: \therefore\text{we basically have to evaluate:}

lim x 0 1 2 x 2 α + 1 4 x 4 α 3 x 2 4 x 4 \large\displaystyle\lim_{x\to 0}\dfrac{\frac{1}{2}\frac{x^{2}}{\alpha} + \frac{1}{4}\frac{x^{4}}{\alpha^{3}} - \frac{x^{2}}{4}}{x^{4}}

Now, since φ \varphi is finite, the coefficient of x 2 x^{2} in the numerator should be = 0 =0

Thus, by solving, we get: α = 2 \alpha=2 and the value of the limit:

φ = 1 4 α 3 = 1 32 \large\varphi=\dfrac{1}{4\alpha^{3}}=\boxed{\dfrac{1}{32}}

φ + α = 2.03125 \large\therefore\varphi+\alpha=\large\boxed{2.03125}

I think that the value came out to be 1/64 and answer 2.0156

Prince Loomba - 5 years ago

@Aritra Jana You have missed out 2! in the third term while expanding the binomial.

Ankit Kumar Jain - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...