Scary Limit

Calculus Level 4

lim x 0 { sin 2 ( π 2 a x ) } sec 2 ( π 2 b x ) \large \lim_{x\rightarrow 0} \left\{\sin^{2}\left(\dfrac{\pi}{2-ax}\right)\right\}^{\sec^{2}\left(\frac{\pi}{2-bx}\right)}

If the value of the above limit is in the form e k ( a 2 b 2 ) e^{k\left(\frac{a^2}{b^2}\right)} , where k k is a integer, then find 2017 k -2017k .


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
May 12, 2017

L = lim x 0 [ sin 2 ( π 2 a x ) ] sec 2 ( π 2 b x ) \large \displaystyle L = \lim_{x \rightarrow 0} \left [ \sin^2 \left ( \frac{\pi}{2 - ax} \right) \right] ^{\sec^2 \left ( \frac{\pi}{2 - bx} \right)}

ln ( L ) = lim x 0 ln [ sin 2 ( π 2 a x ) ] cos 2 ( π 2 b x ) \large \displaystyle \ln(L) = \lim_{x \rightarrow 0} \frac{\ln \left [ \sin^2 \left ( \frac{\pi}{2 - ax} \right) \right]}{\cos^2 \left ( \frac{\pi}{2 - bx} \right)}

L'hopital applies:

ln ( L ) = lim x 0 1 sin 2 ( π 2 a x ) sin ( 2 π 2 a x ) a π ( 2 a x ) 2 sin ( 2 π 2 b x ) b π ( 2 b x ) 2 \large \displaystyle \ln(L) = \lim_{x \rightarrow 0} \frac{ \frac{1}{\sin^2 \left ( \frac{\pi}{2 - ax} \right) } \cdot \sin \left ( \frac{2 \pi}{2 - ax} \right) \cdot \frac{a \pi}{(2 - ax)^2 }} {- \sin \left ( \frac{2 \pi}{2 - bx} \right) \cdot \frac{b \pi}{(2 - bx)^2 }}

ln ( L ) = a b lim x 0 sin ( 2 π 2 a x ) sin ( 2 π 2 b x ) \large \displaystyle \ln(L) = - \frac{a}{b} \cdot \lim_{x \rightarrow 0} \frac{\sin \left ( \frac{2 \pi}{2 - ax} \right)} {\sin \left ( \frac{2 \pi}{2 - bx} \right)}

Again, L'hopital applies:

ln ( L ) = a b lim x 0 cos ( 2 π 2 a x ) 2 a π ( 2 a x ) 2 cos ( 2 π 2 b x ) 2 b π ( 2 b x ) 2 \large \displaystyle \ln(L) = - \frac{a}{b} \cdot \lim_{x \rightarrow 0} \frac{\cos \left ( \frac{2 \pi}{2 - ax} \right) \cdot \frac{2a \pi}{(2-ax)^2} } {\cos \left ( \frac{2 \pi}{2 - bx} \right) \cdot \frac{2b \pi}{(2-bx)^2}}

ln ( L ) = a 2 b 2 \large \displaystyle \ln(L) = - \frac{a^2}{b^2}

L = e a 2 b 2 \color{#20A900} \boxed{\large \displaystyle L = e^{ - \frac{a^2}{b^2}}}

Thus:

k = 1 , 2017 k = 2017 \color{#3D99F6} \large \displaystyle k = -1, \boxed{\large \displaystyle -2017k = 2017}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...