Scary Limits!!

Calculus Level 4

β \beta = lim x ( 2 x n ) 1 / e x ( 3 x n ) 1 / e x x n \displaystyle \lim_{ x \rightarrow \infty} \dfrac{(2^{x^n})^{{1}/{e^x}} -(3^{x^n})^{{1}/{e^x}} }{x^n}

Given That n ϵ \epsilon N.

Find 2 β + 2 β + 1 2^{\beta} + 2^{\beta +1} .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

汶汶 樂
Feb 5, 2015

Good.

β = l i m x e x n e x l o g 2 e x n e x l o g 3 x n \beta = \displaystyle lim_{x \to \infty} \dfrac{e^{\frac{x^n}{e^x}log2} - e^{\frac{x^n}{e^x}log3}}{x^n}

β = l i m x e x n e x l o g 2 1 ( e x n e x l o g 3 1 ) x n \beta = \displaystyle lim_{x \to \infty} \dfrac{e^{\frac{x^n}{e^x}log2} - 1 - ( e^{\frac{x^n}{e^x}log3} - 1)}{x^n}

β = l i m x e x n e x l o g 2 1 x n e x n e x l o g 3 1 x n \beta = \displaystyle lim_{x \to \infty} \dfrac{e^{\frac{x^n}{e^x}log2} - 1}{x^n} - \dfrac{ e^{\frac{x^n}{e^x}log3} - 1}{x^n}

β = l i m x e x n e x l o g 2 1 x n e x l o g 2 × l o g 2 e x e x n e x l o g 3 1 x n e x l o g 3 × l o g 3 e x \beta = \displaystyle lim_{x \to \infty} \dfrac{e^{\frac{x^n}{e^x}log2} - 1}{\dfrac{x^ne^x}{log2}\times \dfrac{log2}{e^x}} - \dfrac{ e^{\frac{x^n}{e^x}log3} - 1}{\dfrac{x^ne^x}{log3}\times \dfrac{log3}{e^x}}

β = 0 \beta =0

U Z - 6 years, 4 months ago
Incredible Mind
Feb 5, 2015

u can do this in ur head...

lim x -> inf x^n/e^x = 0

hence ans becomes 2^0-3^0 / inf^n at x=inf.so beta is 0*0=0..

ANS is 2^0+2^1=3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...