scary product !!!

Algebra Level 4

Greatest integer value of (2/1)×(4/3)×(6/5)×.....×(100÷99)

15 14 13 12

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vighnesh Raut
May 9, 2015

2 × 4 × 6 × . . . . × 100 1 × 3 × 5 × . . . . . × 99 \frac { 2\times 4\times 6\times ....\times 100 }{ 1\times 3\times 5\times .....\times 99 } Now, we multiply 2 4 6 . . . . . 100 2*4*6*.....*100 in both numerator and denominator to get ( 2 × 4 × 6 × . . . . × 100 ) 2 1 × 2 × 3 × 4 × 5 × . . . . . × 99 × 100 = 2 100 × 50 ! × 50 ! 100 ! = 2 100 ( 100 50 ) \frac { { (2\times 4\times 6\times ....\times 100) }^{ 2 } }{ 1\times 2\times 3\times 4\times 5\times .....\times 99\times 100 } \\ =\frac { { 2 }^{ 100 }\times 50!\times 50! }{ 100! } \\ =\frac { { 2 }^{ 100 } }{ \left( \begin{matrix} 100 \\ 50 \end{matrix} \right) } Using the asymptotic properties of central binomial coefficient, we know ( 2 n n ) 2 2 n n π \left( \begin{matrix} 2n \\ n \end{matrix} \right) \simeq \frac { { 2 }^{ 2n } }{ \sqrt { n\pi } } So rearranging the above gives 2 100 50 π 2 100 = 50 π = 157.08 12.5 \frac { { 2 }^{ 100 }\sqrt { 50\pi } }{ { 2 }^{ 100 } } \\ =\sqrt { 50\pi } \\ =\sqrt { 157.08 } \\ \approx 12.5 Hence, greatest integer value is 12 12

I got 12.5645 and gave the answer as 13!! miss interpreting the word of the problem.

Niranjan Khanderia - 2 years, 9 months ago

Log in to reply

Yea. The problem statement is a bit misleading. I wonder how I selected 12 12 , and not 13 13 , at that time.

Vighnesh Raut - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...