School's out! Exams are over! Enjoy this problem!

Calculus Level 5

The general solution of the differential equation ( y 2 + 2 t 2 y ) d t + ( 2 t 3 t y ) d y = 0 ({ y }^{ 2 }+2{ t }^{ 2 }y)dt+(2{ t }^{ 3 }-ty)dy=0 is of the form: a ( t y ) c / d e f ( y t ) g / h = A a(ty)^{ { c }/{ d } }-\dfrac { e }{ f } \left(\dfrac { y }{ t } \right)^{ { g }/{ h } }=A , where A A is an arbitrary constant and a , c , d , e , f , g , h a,c,d,e,f,g,h are all natural numbers, a a is not divisible by 3, and a + e < 14. a + e < 14.

Find a + d + e + f + g + h a+d+e+f+g+h .

Note: c,d are coprime,
e, f are prime,
g, h are coprime.


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Emil Joseph
Apr 20, 2015

y 2 d t + 2 t 2 y d t + 2 t 3 d y t y d y = 0 ( y 2 d t t y d y ) + ( 2 t 2 y d t + 2 t 3 d y ) = 0 y t 2 ( y d t t d y t 2 ) + 2 t 2 ( y d t + t d y ) = 0 y t 2 ( t d y y d t t 2 ) + 2 t 2 ( y d t + t d y ) = 0 y t 2 d ( y t ) + ( 2 t 2 ) d ( y t ) = 0 y d ( y t ) = 2 d ( y t ) . . . . . ( 1 ) { \quad \quad \quad \quad \quad y }^{ 2 }dt\quad +\quad 2{ t }^{ 2 }ydt\quad +\quad 2{ t }^{ 3 }dy\quad -tydy\quad =\quad 0\\ \Longrightarrow ({ y }^{ 2 }dt\quad -\quad tydy)\quad +\quad (2{ t }^{ 2 }ydt\quad +{ 2t }^{ 3 }dy)\quad =\quad 0\\ \Longrightarrow y{ t }^{ 2 }(\frac { ydt-tdy }{ { t }^{ 2 } } )\quad +\quad 2{ t }^{ 2 }(ydt\quad +\quad tdy)\quad =0\\ \Longrightarrow -y{ t }^{ 2 }(\frac { tdy-ydt }{ { t }^{ 2 } } )\quad +\quad 2{ t }^{ 2 }(ydt\quad +\quad tdy)\quad =0\\ \Longrightarrow -y{ t }^{ 2 }d(\frac { y }{ t } )\quad +(2{ t }^{ 2 })d(yt)=0\\ \Longrightarrow yd(\frac { y }{ t } )\quad =2\quad d(yt) .....(1)

Now let y t = u y t = v y 2 = u v y = u v \frac { y }{ t } =u\\ yt=v\\ \Longrightarrow { y }^{ 2 }=uv\\ \Longrightarrow y=\sqrt { u } \sqrt { v }

Substituting the above in equation (1)

u v d u = 2 d v u d u = 2 v d v 2 3 u 3 / 2 + A = 4 v 4 ( y t ) 1 / 2 2 3 ( y t ) 3 / 2 + A = 0 \sqrt { u } \sqrt { v } du=2dv\\ \\ \Longrightarrow \int { \sqrt { u } } du=\int { \frac { 2 }{ \sqrt { v } } } dv\quad \\ \Longrightarrow \frac { 2 }{ 3 } { u }^{ 3/2 }\quad +\quad A=4\sqrt { v } \quad \\ \Longrightarrow 4({ yt) }^{ 1/2 }-\frac { 2 }{ 3 } { (\frac { y }{ t } })^{ 3/2 }+A\quad =0

Hence the value of a+d+e+f+g+h = 16 \boxed { 16 }

Vishnu C
Mar 30, 2015

T h i s d i f f e r e n t i a l e q u a t i o n ( D E ) r e s e m b l e s a n e x a c t d i f f e r e n t i a l e q u a t i o n b u t i t i s n t o n e . T h a t s b e c a u s e i t i s m i s s i n g i t s i n t e g r a t i o n f a c t o r ( I F ) . I n t h i s p r o b l e m , y o u m u l t i p l y t h e e n t i r e e q u a t i o n b y t h y k a n d t h e n y o u t e s t i t f o r m a t c h i n g t h e e x a c t D E c r i t e r i a . S o , i f t h e e q u a t i o n i s l i k e M d y + N d t = 0 r i g h t n o w a n d y o u m u l t i p l y i t o n b o t h s i d e s b y t h e I F , y o u s h o u l d g e t ( M d y + N d t ) t h y k = 0. T h i s i s a n e x a c t D E i f f ( M t h y k ) t = ( N t h y k ) y . I f y o u s o l v e t h i s e q u a t i o n , y o u w i l l g e t t h e v a l u e s f o r h a n d k . S u b s t i t u t e t h e v a l u e s a n d s o l v e i t l i k e a n e x a c t d i f f e r e n t i a l . I f y o u d o i t r i g h t , y o u s h o u l d g e t : a = 4 ; b = n o t h i n g b e c a u s e I f o r g o t t o u s e i t . c = 1 ( b u t i t i s n o t i n c l u d e d i n t h e s u m o f a + d + . . . ) d = 2 ; e = 2 ; f = 3 ; g = 3 ; h = 2. S o t h e s o l u t i o n s h o u l d l o o k l i k e : 4 t y 2 3 ( y t ) 3 / 2 = A . This\quad differential\quad equation\quad (DE)\quad resembles\quad an\quad exact\quad \\ differential\quad equation\quad but\quad it\quad isn't\quad one.\quad That's\quad because\quad it\\ is\quad missing\quad its\quad integration\quad factor\quad (IF).\quad In\quad this\quad problem,\\ you\quad multiply\quad the\quad entire\quad equation\quad by\quad { t }^{ h }{ y }^{ k }\quad and\quad then\quad you\quad \\ test\quad it\quad for\quad matching\quad the\quad exact\quad DE\quad criteria.\\ \\ So,\quad if\quad the\quad equation\quad is\quad like\quad Mdy+Ndt=0\quad right\quad now\quad and\quad \\ you\quad multiply\quad it\quad on\quad both\quad sides\quad by\quad the\quad IF,\quad you\quad should\quad get\\ (Mdy+Ndt){ t }^{ h }{ y }^{ k }=0.\\ This\quad is\quad an\quad exact\quad DE\quad iff\quad \\ \frac { \partial (M{ t }^{ h }{ y }^{ k }) }{ \partial t } =\frac { \partial (N{ t }^{ h }{ y }^{ k }) }{ \partial y } .\\ If\quad you\quad solve\quad this\quad equation,\quad you\quad will\quad get\quad the\quad values\quad for\\ h\quad and\quad k.\\Substitute\quad the \quad values \quad and \quad solve\quad it\quad like\quad an\quad exact\quad differential.\\ If\quad you\quad do\quad it\quad right,\quad you\quad should\quad get:\\ a=4;\quad b=nothing\quad because\quad I\quad forgot\quad to\quad use\quad it.\\ c=1\quad (but\quad it\quad is\quad not\quad included\quad in\quad the\quad sum\quad of\quad a+d+...)\\ d=2;\quad e=2;\quad f=3;\quad g=3;\quad h=2.\quad So\quad the\quad solution\quad should\\ look\quad like:\\ 4\sqrt { ty } -\frac { 2 }{ 3 } (\frac { y }{ t } )^{ { 3 }/{ 2 } }=A.

Note: Here, M and N are functions of y and t.

Suppose i divide the equation by 2...

Akul Agrawal - 5 years, 10 months ago
Tanishq Varshney
Mar 30, 2015

I have seen this problem before so i knew the answer , but i m not able to solve it

i got stuck at this step 2 y d ( y t ) = d ( y t ) \frac{2}{y}d(yt)=d(\frac{y}{t})

Any hint plz suggest vishnu c

You could take y t = v y t = u y 2 = v u o r y = v u yt=v\\ \frac { y }{ t } =u\\ \Longrightarrow { y }^{ 2 }=vu\\ or\quad y=\sqrt { v } \sqrt { u } \\

Now Substitute it in the equation to get

2 v u d v = d u \frac { 2 }{ \sqrt { v } \sqrt { u } } dv=du\\

I guess you can take it from here!

Emil Joseph - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...