∫ 0 1 x lo g ( x ) ( lo g ( 1 − x ) ) 3 d x = A ζ ( 2 B + 1 ) − D π c ζ ( 2 E + 1 )
A , B , C , D , E are positive integers. Find A + B + C + D + E .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Sir is there a way I can contact you personally?
Aliter :
∫ 0 1 x lo g ( x ) ( lo g ( 1 − x ) ) 3 d x = a → 0 + lim b → 1 lim ( ∂ a ∂ ( ∂ b 3 ∂ 3 B ( a , b ) ) )
= 1 2 ζ ( 5 ) − π 2 ζ ( 3 )
⟹ A + B + C + D + E = 1 8
How do you write this ?????
Problem Loading...
Note Loading...
Set Loading...
We have ∫ 0 1 x ln x ln 3 ( 1 − x ) d x = = = = = = = = ∫ 0 1 1 − x ln ( 1 − x ) ln 3 x d x − n = 1 ∑ ∞ H n ∫ 0 1 x n ln 3 x d x 6 n = 1 ∑ ∞ ( n + 1 ) 4 H n 6 n = 1 ∑ ∞ ( ( n + 1 ) 4 H n + 1 − ( n + 1 ) 5 1 ) 6 n = 2 ∑ ∞ ( n 4 H n − n 5 1 ) 6 n = 1 ∑ ∞ ( n 4 H n − n 5 1 ) 6 [ 3 ζ ( 5 ) − 6 1 π 2 ζ ( 3 ) − ζ ( 5 ) ] 1 2 ζ ( 5 ) − π 2 ζ ( 3 ) making the answer 1 2 + 2 + 2 + 1 + 1 = 1 8 .