Sec-cubed

Calculus Level 3

Without using a calculator find the exact value of 0 π 3 sec 3 x d x \int_{0}^{\frac{\pi}{3}}\sec ^{3}x\textrm{d}x

1 4 ( ln ( 2 + 3 ) ) 4 \frac{1}{4}\left ( \ln \left ( 2+\sqrt{3} \right )\right )^{4} 1 2 ln ( 2 + 3 ) + 3 \frac{1}{2}\ln \left ( 2+\sqrt{3} \right )+\sqrt{3} 3 ln ( 2 + 3 ) \sqrt{3}\ln \left ( 2+\sqrt{3} \right ) ln ( 2 + 3 ) + 2 3 \ln \left ( 2+\sqrt{3} \right )+2\sqrt{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jeremy Hodges
Feb 11, 2015

0 π 3 sec 3 x d x = 0 π 3 sec x ( sec 2 x ) d x \int_{0}^{\frac{\pi}{3}}\sec^{3}x\textrm{d}x=\int_{0}^{\frac{\pi}{3}}\sec x\left ( \sec^{2}x \right )\textrm{d}x = 0 π 3 sec x ( 1 + tan 2 x ) d x =\int_{0}^{\frac{\pi}{3}}\sec x\left ( 1+ \tan^{2}x \right )\textrm{d}x = 0 π 3 sec x + sec x tan 2 x d x =\int_{0}^{\frac{\pi}{3}}\sec x + \sec x\tan^{2}x \textrm{d}x = 0 π 3 sec x d x + 0 π 3 sec x tan 2 x d x =\int_{0}^{\frac{\pi}{3}}\sec x\textrm{d}x + \int_{0}^{\frac{\pi}{3}}\sec x\tan^{2}x \textrm{d}x = [ ln sec x + tan x ] 0 π 3 + 0 π 3 sec x tan 2 x d x =\left [ \ln \left | \sec x + \tan x \right | \right ]_{0}^{\frac{\pi}{3}} + \int_{0}^{\frac{\pi}{3}}\sec x\tan^{2}x \textrm{d}x Using integration by parts to solve the second integral where, u = tan x d u d x = sec 2 x u=\tan x\Rightarrow \frac{du}{dx}=\sec^{2}x d v d x = sec x tan x v = sec x \frac{dv}{dx}=\sec x\tan x \Rightarrow v=\sec x 0 π 3 sec 3 x d x = [ ln sec x + tan x ] 0 π 3 + [ sec x tan x ] 0 π 3 0 π 3 sec x sec 2 x d x \int_{0}^{\frac{\pi}{3}}\sec^{3}x\textrm{d}x=\left [ \ln \left | \sec x + \tan x \right | \right ]_{0}^{\frac{\pi}{3}} +\left [ \sec x \tan x\right ]_{0}^{\frac{\pi}{3}} - \int_{0}^{\frac{\pi}{3}}\sec x\sec^{2}x \textrm{d}x Adding the integral to both sides gives, 2 0 π 3 sec 3 x d x = [ ln sec x + tan x ] 0 π 3 + [ sec x tan x ] 0 π 3 2\int_{0}^{\frac{\pi}{3}}\sec^{3}x\textrm{d}x=\left [ \ln \left | \sec x + \tan x \right | \right ]_{0}^{\frac{\pi}{3}} +\left [ \sec x \tan x\right ]_{0}^{\frac{\pi}{3}} 0 π 3 sec 3 x d x = 1 2 [ ln sec x + tan x + sec x tan x ] 0 π 3 \int_{0}^{\frac{\pi}{3}}\sec^{3}x\textrm{d}x=\frac{1}{2}\left [ \ln \left | \sec x + \tan x \right | + \sec x \tan x\right ]_{0}^{\frac{\pi}{3}} = 1 2 { ( ln sec π 3 + tan π 3 + sec π 3 tan π 3 ) ( ln sec 0 + tan 0 + sec 0 tan 0 ) } =\frac{1}{2}\left \{ \left (\ln \left | \sec \frac{\pi}{3} + \tan \frac{\pi}{3} \right | + \sec \frac{\pi}{3} \tan \frac{\pi}{3} \right )-\left ( \ln \left | \sec 0 + \tan 0 \right | + \sec 0 \tan 0 \right )\right \} = 1 2 { ( ln ( 2 + 3 ) + 2 3 ) ( 0 ) } =\frac{1}{2}\left \{ \left (\ln \left ( 2 + \sqrt{3} \right ) + 2\sqrt{3} \right )-\left ( 0 \right )\right \} = 1 2 ln ( 2 + 3 ) + 3 =\frac{1}{2}\ln \left ( 2 + \sqrt{3} \right ) + \sqrt{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...