Second Floor

Algebra Level 5

If y = 2 x + 5 = 3 x 4 y=\left\lfloor 2x+5 \right\rfloor =3\left\lfloor x-4 \right\rfloor and the product of all the distinct values of 3 x + y \left\lfloor 3x+y \right\rfloor is A A , find A m o d 2016 A \bmod{2016} .


Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 252.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

y = 2 x + 5 = 3 x 4 ( G i v e n ) y=\left\lfloor 2x+5 \right\rfloor =3\left\lfloor x-4 \right\rfloor \quad \quad \quad (Given)

2 x + 5 = 3 x 3 ( 4 ) \left\lfloor 2x \right\rfloor +5=3\left\lfloor x \right\rfloor -3\left( 4 \right)

2 x = 3 x 17 \left\lfloor 2x \right\rfloor =3\left\lfloor x \right\rfloor -17

L e t x = I + f W h e r e I i s a n I n t e g e r a n d f i s a F r a c t i o n 0 f < 1. Let\quad x=I+f\quad \quad Where\quad I\quad is\quad an\quad Integer\quad and\quad f\quad is\quad a\quad Fraction\quad 0\le f<1.

2 I + 2 f = 3 I + f 17 2 I + 2 f = 3 I + 3 f 17 2 I + 2 f = 3 I 17 2 f = I 17 \left\lfloor 2I+2f \right\rfloor =3\left\lfloor I+f \right\rfloor -17\\ 2I+\left\lfloor 2f \right\rfloor =3I+3\left\lfloor f \right\rfloor -17\\ 2I+\left\lfloor 2f \right\rfloor =3I-17\\ \left\lfloor 2f \right\rfloor =I-17

0 f < 1 0 2 f < 2 0\le f<1\\ 0\le 2f<2

C a s e 1 \overbrace { \underbrace { Case1 } }

0 2 f < 1 = > 0 f < 0.5 2 f = 0 = I 17 = > I = 17 = > 17 x < 17.5 a s x = I + f x = 17 51 3 x < 52.5 3 x = 51 o r 52 A s y = 3 x 12 ( G i v e n ) y = 3 ( 17 ) 12 = 39 3 x + y = 3 x + 39 = 3 x + 39 = 51 + 39 o r 52 + 39 3 x + y = 90 o r 91 0\le 2f<1\quad =>\quad 0\le f<0.5\\ \left\lfloor 2f \right\rfloor =0=I-17\\ =>\quad I=17\\ =>\quad 17\le x<17.5\quad \quad \quad as\quad x=I+f\\ \left\lfloor x \right\rfloor =17\\ \\ 51\le 3x<52.5\\ \left\lfloor 3x \right\rfloor =\quad 51\quad or\quad 52\\ \\ As\quad y=3\left\lfloor x \right\rfloor -12\quad \quad \quad \quad (Given)\\ y=3(17)-12=39\\ \\ \left\lfloor 3x+y \right\rfloor =\left\lfloor 3x+39 \right\rfloor =\left\lfloor 3x \right\rfloor +39=51+39\quad or\quad 52+39\\ \\ \left\lfloor 3x+y \right\rfloor =90\quad or\quad 91\quad

C a s e 2 \overbrace { \underbrace { Case2 } }

1 2 f < 2 0.5 f < 1 2 f = I 17 I = 18 1\le 2f<2\quad \quad 0.5\le f<1\\ \\ \left\lfloor 2f \right\rfloor =I-17\\ \\ I=18

18.5 x < 19 x = 18 ( A s x = I + f ) 55.5 3 x < 57 3 x = 55 o r 56 y = 3 x 12 = 3 ( 18 ) 12 = 42 3 x + y = 55 + 42 o r 56 + 42 3 x + y = 98 o r 97 18.5\le x<19\quad \quad \left\lfloor x \right\rfloor =18\quad \quad (As\quad x=I+f)\\ 55.5\le 3x<57\\ \left\lfloor 3x \right\rfloor =\quad 55\quad or\quad 56\\ y=3\left\lfloor x \right\rfloor -12=3(18)-12=42\\ \\ \left\lfloor 3x+y \right\rfloor =\quad 55+42\quad or\quad 56+42\\ \left\lfloor 3x+y \right\rfloor =98\quad or\quad 97

A = P r o d u c t o f A l l V a l u e s A = 90 91 97 98 A=\quad Product\quad of\quad All\quad Values\\ A=90*91*97*98

N o w A ( m o d 2016 ) = 90 91 98 97 ( m o d 2016 ) = 8190 9506 ( m o d 2016 ) = 126 1442 ( m o d 2016 ) = 181692 ( m o d 2016 ) = 252 Now\quad A(mod\quad2016)=90*91*98*97\quad (mod\quad2016)\\ =8190*9506(mod\quad2016)=126*1442\quad (mod\quad2016)\\ =181692\quad (mod\quad2016)=\quad252

I Hope you enjoyed My Solution.

Moderator note:

Good approach taken.

Ditto same way.

Kushagra Sahni - 4 years, 8 months ago

Almost the same...

Muhamad Fachri Wijaya - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...