Let be functions satisfying and for all . The second derivative is a constant function, equal to everywhere. Find the value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
As we have to find d x 2 d 2 y , first we get x 2 = cos 2 t
y = sin 2 t = 1 − cos 2 t = 1 − x 2 y ′ = − 2 x y ′ ′ = − 2