Second order matrix differential equation - 2

Calculus Level 3

A 2 × 2 2 \times 2 matrix B ( t ) B(t) satisfies the differential equation,

d 2 B d t 2 + A 2 B = 0 \dfrac{d^2 B }{d t^2} + A^2 B = 0

where A = [ 1 2 2 4 ] A = \begin{bmatrix} 1 && 2 \\ 2 && 4 \end{bmatrix}

subject to the initial conditions,

B ( 0 ) = [ 1 1 2 3 ] B(0) = \begin{bmatrix} 1 && 1 \\ 2 && 3 \end{bmatrix}

d B d t ( 0 ) = [ 1 0 3 1 ] \dfrac{dB}{dt}(0) = \begin{bmatrix} 1 && 0 \\ 3 && 1 \end{bmatrix}

Apply the Laplace transform to the above differential equation, and find B 12 ( t ) B_{12}(t) . You'll find that,

B 12 ( t ) = a 0 + a 1 t + a 2 cos ( ω t ) + a 3 sin ( ω t ) B_{12}(t) = a_0 + a_1 t + a_2 \cos( \omega t ) + a_3 \sin( \omega t ) .

Report the value of 100 ( a 0 + a 1 + a 2 + a 3 + ω ) \lfloor 100 ( a_0 + a_1 + a_2 + a_3 + \omega) \rfloor


The answer is 568.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hosam Hajjir
May 21, 2019

Taking the Laplace transform of the given differential equation, yields,

s 2 B s B ( 0 ) B ( 0 ) + A 2 B = 0 s^2 B - s B(0) - B'(0) + A^2 B = 0

so that,

B ( s ) = ( s 2 I + A 2 ) 1 ( s B ( 0 ) + B ( 0 ) ) B(s) = (s^2 I + A^2)^{-1} ( s B(0) + B'(0) )

The rest is straight forward matrix evaluation, inversion, and multiplication. The resulting B 12 ( s ) B_{12}(s) is given by,

B 12 ( s ) = s 3 10 s 10 s 2 ( s 2 + 25 ) = ( 0.4 ) s + ( 0.4 ) s 2 + 1.4 s + 0.4 s 2 + 25 B_{12}(s) = \dfrac{ s^3 - 10 s - 10 }{ s^2 (s^2 + 25) } = \dfrac{(-0.4)}{s} + \dfrac{(-0.4)}{s^2} + \dfrac{1.4 s + 0.4}{s^2 + 25}

Applying the inverse Laplace transform, we get,

B 12 ( t ) = 0.4 0.4 t + 1.4 cos ( 5 t ) + 0.08 sin ( 5 t ) B_{12}(t) = -0.4 - 0.4 t + 1.4 \cos( 5 t ) + 0.08 \sin( 5 t )

Therefore, the answer is 100 ( 0.4 0.4 + 1.4 + 0.08 + 5 ) = 568 \lfloor 100 ( -0.4 -0.4 + 1.4 + 0.08 + 5 ) \rfloor = \boxed{568}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...