Section formula

Geometry Level 1

In triangle A B C , ABC, the midpoints of sides B C , BC, C A CA and A B AB are ( 1 , 0 ) , (1, 0), ( 3 , 5 ) (3, 5) and ( 2 , 4 ) , (-2, 4), respectively. Find the coordinates of the three vertices A , A, B B and C . C.

A = ( 7 , 2 ) , A= (7, -2), B = ( 1 , 0 ) , B=(-1, 0), C = ( 2 , 8 ) C=(-2, 8) A = ( 0 , 9 ) , A= (0, 9), B = ( 4 , 1 ) , B=(-4, -1), C = ( 6 , 1 ) C=(6, 1) A = ( 9 , 1 ) , A= (9, 1), B = ( 6 , 8 ) , B=(6, -8), C = ( 6 , 12 ) C=(6, 12) A = ( 3 , 8 ) , A= (3, -8), B = ( 14 , 3 ) , B=(-14, 3), C = ( 4 , 2 ) C=(-4, 2)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the coordinates of point A be ( x 1 , y 1 ) ({ x }_{ 1 },\quad { y }_{ 1 }) , B be ( x 2 , y 2 ) ({ x }_{ 2 },\quad { y }_{ 2 }) and C be ( x 3 , y 3 ) ({ x }_{ 3 },\quad { y }_{ 3 }) . Given the midpoint of BC is ( 1 , 0 ) (1,0) , that of CA is ( 3 , 5 ) (3,5) and that of AB is ( 2 , 4 ) (-2,4) . Then we obtain three equations in x 1 { x }_{ 1 } , x 2 { x }_{ 2 } and x 3 { x }_{ 3 } :

x 1 + x 2 2 = 2 \frac { { x }_{ 1 }+{ x }_{ 2 } }{ 2 } =-2
x 2 + x 3 2 = 1 \frac { { x }_{ 2 }+{ x }_{ 3 } }{ 2 } =1 x 3 + x 1 2 = 3 \frac { { x }_{ 3 }+{ x }_{ 1 } }{ 2 } =3

Adding all the above equations together, we get x 1 + x 2 + x 3 = 2 { x }_{ 1 }+{ x }_{ 2 }+{ x }_{ 3 }=2 Which gives us x 1 = 0 { x }_{ 1 }=0 , x 2 = 4 { x }_{ 2 }=-4 and x 3 = 6 { x }_{ 3 }=6

Similarly, we can solve for the y-coordinates:

y 1 + y 2 2 = 4 \frac { { y }_{ 1 }+{ y }_{ 2 } }{ 2 } =4 y 2 + y 3 2 = 0 \frac { { y }_{ 2 }+{ y }_{ 3 } }{ 2 } =0 y 3 + y 1 2 = 5 \frac { { y }_{ 3 }+{ y }_{ 1 } }{ 2 } =5

Adding all the equations, we have y 1 = 9 { y }_{ 1 }=9 , y 2 = 1 { y }_{ 2 }=-1 and y 3 = 1 { y }_{ 3 }=1

Hence we have the coordinates A ( 0 , 9 ) A(0,9) , B ( 4 , 1 ) B(-4,-1) and C ( 6 , 1 ) C(6,1) of the vertices of the Δ A B C \Delta ABC

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...