A geometry problem by A Former Brilliant Member

Geometry Level 3

A triangle A B C ABC is such that:

  1. A = 4 5 \angle A = 45^\circ
  2. tan A \tan A , tan B \tan B , and tan C \tan C are in an arithmetic progression.

Find the value of tan C \tan C .


The answer is 3.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

T a n A = T a n 45 = 1. L e t T a n B = 1 + d , a n d T a n C = 1 + 2 d . B u t i n a T a n A + T a n B + T a n C = T a n A T a n B T a n C . 1 + ( 1 + d ) + ( 1 + 2 d ) = 1 ( 1 + d ) ( 1 + 2 d ) 3 ( 1 + d ) = ( 1 + d ) ( 1 + 2 d ) , S i n c e B 0 , T a n B 0 , 1 + d 0. S o 3 = 1 + 2 d , d = 1. S o A = T a n 1 1 , B = T a n 1 2 C = T a n 1 3. T a n C = 3. TanA=Tan45=1.\ \ \ Let\ \ TanB=1+d,\ \ \ and\ \ \ TanC=1+2d.\\ But\ in\ a\ \triangle\ TanA+TanB+TanC=TanA*TanB*TanC.\\ \therefore\ \ 1+(1+d)+(1+2d) = 1*(1+d)*(1+2d)\\ \implies\ 3(1+d)=(1+d)(1+2d),\ \ Since\ B\neq 0,\ TanB\neq 0,\ \therefore\ 1+d\neq 0.\\ So\ 3=1+2d,\ \ \implies\ d=1.\\ So\ A=Tan^{-1}1,\ \ \ B=Tan^{-1}2\ \ \ C=Tan^{-1}3.\\ \therefore\ TanC=\Large\ \ \color{#D61F06}{3}.\\\ \ \ \\

Harry Jones
Dec 30, 2016

A = 4 5 \angle{A}=45^{\circ} . So tan A = 1 \tan{A}=1 . Let 1 = tan B d \begin{aligned}1=\tan{B}-d\end{aligned} and tan C = tan B + d \begin{aligned}\tan{C}=\tan{B}+{d} \end{aligned} ; where d is common difference \begin{aligned}\text{d is common difference}\end{aligned}

Using the triangle identity tan A + tan B + tan C = tan A tan B tan C \begin{aligned}\tan{A}+\tan{B}+\tan{C}=\tan{A}\tan{B}\tan{C}\end{aligned} , we get 3 tan B = tan B tan C \begin{aligned}3{\tan{B}}=\tan{B}\tan{C}\end{aligned} . And hence tan C = 3 \begin{aligned}\tan{C}=3\end{aligned}

General Manstein
Dec 1, 2016

Find 2tan(B)=1+tan(C)

Use tan(A+C)= (1+tan(C))/(1-tan(C))

Find tan(C)=3

Can you please give a little details how ? Thanks.

Niranjan Khanderia - 4 years, 6 months ago

Log in to reply

tangents are in ap, so tan(b)-tan(a)=tan(c)-tan(b), now

tan(a+c)=(tan(a)+tan(c))/(1-tan(a).tan(c))

General Manstein - 4 years, 6 months ago

Log in to reply

Sorry. How do we get tan(c)=3 is not clear. Thank you.

Niranjan Khanderia - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...