Seek the longest solution ever in brilliant.org

Calculus Level 5

Two functions f ( x ) , g ( x ) f(x),g(x) are such that f ( x ) = ( x 2 ) e x 1 1 2 x 2 + x + 1 2 f(x)=(x-2)e^{x-1}-\dfrac{1}{2}x^2+x+\dfrac{1}{2} , g ( x ) = a x 2 x + 4 a cos x + ln ( x + 1 ) g(x)=ax^2-x+4a\cos x+\ln(x+1) , where a a is a parameter and a R a \in \mathbb R .

Function max { m , n } \max\{m,n\} denotes the maximum value of m , n m,n . Let F ( x ) = max { f ( x ) , g ( x ) } ( x > 1 ) F(x)=\max \{f(x),g(x)\}(x>-1) .

Casework the number of real roots for F ( x ) = 0 F(x)=0 .

The result is as follows:

  • When a > A a>A or a < B a<B , there are N 1 N_1 roots.

  • When a = A a=A or a = B a=B , there are N 2 N_2 roots.

  • When B < a < A B<a<A , there are N 3 N_3 roots.

Submit 10000 ( A + B + N 1 + N 2 + N 3 ) \lfloor 10000(A+B+N_1+N_2+N_3) \rfloor .

Note: Thank for Jon Haussmann for revising the answer.


The answer is 60970.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Making the graph of f ( x ) , g ( x ) and F ( x ) on graph plotter we see that : \text{ Making the graph of }f(x)\,,\, g(x)\text{ and }F(x) \text{ on graph plotter we see that :}

1. x = 1 is the only solution of f ( x ) = 0. 2. Curve y = g ( x ) moves downward as a decreases. 3. From the above figure we see that for a = 0.2 there is only 1 solution of F ( x ) = 0. \text{1. }x = 1\text{ is the only solution of }f(x) = 0.\newline\text{2. Curve }y = g(x) \text{ moves downward as }a\text{ decreases. }\newline\text{3. From the above figure we see that for }a = 0.2\text{ there is only }1\text{ solution of }F(x) = 0.

As a decreases curve y = g ( x ) tends to intersect the curve y = f ( x ) at x = 1. At this value of a , x = 1 is a solution of g ( x ) = 0 i.e. g ( 1 ) = 0 a 1 + 4 a cos ( 1 ) + ln ( 2 ) = 0 a = 1 ln ( 2 ) 1 + 4 cos ( 1 ) = 0.09706 \text{As }a\text{ decreases curve }y = g(x) \text{ tends to intersect the curve }y = f(x)\text{ at }x = 1.\text{ At this value of }a\,,\,x = 1\text{ is a solution of }g(x) = 0\; \text{i.e.}\newline\hspace{15pt} g(1) = 0\newline\Rightarrow a - 1 +4a\,\text{cos}(1) + \text{ln}(2) = 0\newline\large\Rightarrow a = \frac{1 - \text{ln}(2)}{1 + 4\text{cos}(1)} = 0.09706

A = 0.09706 and N 2 = 2 , N 1 = 1 \newline\Rightarrow A = 0.09706\hspace{30pt} \text{and}\; N_2 = 2\,,\,N_1 = 1

There are three solution for a < A upto certain number B N 3 = 3. On decreasing the value of a from a = A we see that curve y = g ( x ) touches the x-axis when a = 0. At this value of a number of solutions of F ( x ) = 0 reduces to 2. \text{There are three solution for }a < A \text{ upto certain number }B \Rightarrow N_3 = 3.\text{ On decreasing the value of }a \text{ from }a = A \text{ we see that curve }y = g(x) \text{ touches the x-axis when }a = 0.\text{ At this value of }a\text{ number of solutions of }F(x) = 0 \text{ reduces to 2. }

On further decreasing a number of solution of F ( x ) = 0 reduces to 1 . So B = 0 \text{On further decreasing }a\text{ number of solution of }F(x) = 0\text{ reduces to }1\text{. So }B = 0

A = 0.09706 , B = 0 , N 1 = 1 , N 2 = 2 , N 3 = 3 A + B + N 1 + N 2 + N 3 = 0.09706 + 0 + 1 + 2 + 3 = 6.09706 10000 ( A + B + N 1 + N 2 + N 3 ) = 60970.6 10000 ( A + B + N 1 + N 2 + N 3 ) = 60970 A = 0.09706\,,\,B = 0\,,\, N_1 = 1\,,\,N_2 = 2\,,\,N_3 = 3\newline\Rightarrow A+B+N_1+N_2+N_3 = 0.09706+0+1+2+3=6.09706\newline\Rightarrow 10000(A+B+N_1+N_2+N_3) = 60970.6\newline\Rightarrow\lfloor10000(A+B+N_1+N_2+N_3)\rfloor = \boxed{60970}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...