Integrating Ratio Of Sines?

Calculus Level 3

Let n n be a positive integer , find the value of 0 π sin 2 n x sin 2 x d x . \int_0^\pi \dfrac{\sin^2 nx}{\sin^2 x}\, dx.

n π 4 \dfrac{n\pi}4 n π 2 \dfrac{n\pi}2 n π n\pi 2 n π 2n\pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Aug 10, 2016

Claim : 0 π sin 2 n x sin 2 x d x = n π \displaystyle \int_0^\pi \dfrac{\sin^2 nx}{\sin^2 x} \, dx = n \pi , where n n is a positive integer .

Proof : Let I n = 0 π sin 2 n x sin 2 x d x \displaystyle I_n = \int_0^\pi \dfrac{\sin^2 nx}{\sin^2 x} \, dx , where n = 1 , 2 , 3 , n = 1,2,3,\ldots .

It is trivial to show that I 1 = π I_1 = \pi .

To prove that I n = n π I_n = n\pi is equivalent to proving that I n + 1 I n = ( n + 1 ) π n π = π I_{n+1} - I_n = (n+1)\pi - n\pi = \pi . We have

I n + 1 I n = 0 π sin 2 [ ( n + 1 ) x ] sin 2 ( n x ) sin 2 x d x = 0 π ( sin [ ( n + 1 ) x ] + sin [ n x ] ) ( sin [ ( n + 1 ) x ] sin [ n x ] ) sin 2 x d x = 0 π 2 sin [ 2 n + 1 2 x ] cos x 2 2 cos [ 2 n + 1 2 x ] sin x 2 sin 2 x d x = 0 π sin [ ( 2 n + 1 ) x ] sin x sin 2 x d x = 0 π sin [ ( 2 n + 1 ) x ] sin x d x = 0 π [ 1 + 2 k = 1 n cos ( 2 k x ) ] d x = π + 2 [ k = 1 n 1 2 k sin ( 2 k x ) ] 0 π 0 = π . \begin{aligned} I_{n+1} - I_n &=& \int_0^\pi \dfrac{ \sin^2 [ (n+1) x ] - \sin^2 (nx) }{\sin^2 x }\, dx\\ &=& \int_0^\pi \dfrac{ \left( \sin [ (n+1) x ] + \sin[ nx] \right) \left( \sin [ (n+1) x ] - \sin[ nx] \right) }{\sin^2 x} \, dx\\ &=& \int_0^\pi \dfrac{ 2\sin \left[ \frac{2n+1}2 x \right]\cos \frac x2 \cdot 2\cos \left[ \frac{2n+1}2 x \right ] \sin \frac x2 }{\sin^2 x} \, dx\\ &=& \int_0^\pi \dfrac{\sin[(2n+1)x] \cdot \sin x}{\sin^2 x} \, dx \\ &=& \int_0^\pi \dfrac{\sin[(2n+1)x] }{\sin x} \, dx \\ &=& \int_0^\pi \left [1 + 2\sum_{k=1}^n \cos(2kx) \right ] \, dx \\ &=& \pi + 2 \cancelto0{ \left [\sum_{k=1}^n \dfrac1{2k} \sin(2kx) \right]_0^\pi \quad } = \pi \; .\\ \end{aligned}

Since the finite difference between each consecutive I n I_n 's is π \pi , and we know that I 1 = π I_1 = \pi , then I n = n π I_n= n\pi . We're done!


In the steps above, we have used the trigonometric identities:

  • Sum-to-product identities : sin A + sin B = 2 sin ( A + B 2 ) cos ( A B 2 ) \sin A + \sin B = 2\sin \left( \dfrac{A+B}2 \right) \cos \left( \dfrac{A-B}2 \right) and sin A sin B = 2 cos ( A + B 2 ) sin ( A B 2 ) \sin A - \sin B = 2\cos \left( \dfrac{A+B}2 \right) \sin \left( \dfrac{A-B}2 \right) .

  • Double angle identities : sin ( 2 A ) = 2 sin A cos A \sin(2A) = 2\sin A \cos A .

  • Dirichlet kernel, sin [ ( 2 n + 1 ) x ] sin x = 1 + 2 k = 1 n cos ( k x ) \displaystyle \dfrac{\sin[(2n+1)x]}{\sin x} = 1 + 2\sum_{k=1}^n \cos(kx) , which can be shown using straightforward telescoping sum of product-to-sum identities.

Is there any non induction solution?

Harsh Shrivastava - 4 years, 10 months ago

Log in to reply

Ask @Kishore S Shenoy

Pi Han Goh - 4 years, 10 months ago

You can use the representation for sin ( n x ) \sin (nx) in terms of sin x , cos x \sin x , \cos x and then work with sin a x sin b x d x \int \sin ax \sin bx \, dx (which is 0 except when a = b a = b ).

The induction approach is slightly more natural (because of that cancellation), though both essentially result in the "same" equation.

Calvin Lin Staff - 4 years, 10 months ago

Wohoo! We both did almost the same! Ahaha!

Kishore S. Shenoy - 4 years, 10 months ago

In the trigonometric identities used the dirichlet's kernel should be cos(2kx).

suraj sahoo - 3 years, 7 months ago

I know it's cheating, but just let n = 1 n=1 and you are done :D

:P. I know it. It's just for proof. Beauty of mathematical induction. :)

Kishore S. Shenoy - 4 years, 10 months ago

Log in to reply

Of course! I would never consider my "solution" a solution. This is a mathematically rich and beautiful problem!

Ραμών Αδάλια - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...