A = n → ∞ lim ⎝ ⎛ k = 1 ∑ n arctan ( n k ) − B n ⎠ ⎞
The limit A above exists. Find e 4 A − 2 B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Taylor's Theorem (with Lagrange Remainder)
In order for the limit to exist, we must have B = n → ∞ lim n 1 k = 1 ∑ n tan − 1 ( n k ) = ∫ 0 1 tan − 1 ( x ) d x = x tan − 1 ( x ) − 2 1 ln ( x 2 + 1 ) ∣ ∣ ∣ 0 1 = 4 π − 2 1 ln 2
Then, using the integral form for B and writing f ( x ) = tan − 1 ( x ) , we have k = 1 ∑ n tan − 1 ( n k ) − B n = n ( n 1 k = 1 ∑ n tan − 1 ( n k ) − ∫ 0 1 tan − 1 d x ) = n k = 1 ∑ n ∫ ( k − 1 ) / n k / n ( f ( n k ) − f ( x ) ) d x = n k = 1 ∑ n 2 1 f ′ ( x k , n ) ⋅ n 2 1 for some x k , n ∈ ( n k − 1 , n k ) = 2 1 ⋅ n 1 k = 1 ∑ n f ′ ( x k , n ) n → ∞ 2 1 ∫ 0 1 f ′ ( x ) d x = 2 1 [ f ( 1 ) − f ( 0 ) ] = 8 π : = A [Taylor’s theorem with Lagrange Remainder]
Therefore, e 4 A − 2 B = e ln 2 = 2
Problem Loading...
Note Loading...
Set Loading...
If f is continuously differentiable on [ 0 , 1 ] , and if 0 ≤ a < b ≤ 1 , then 2 1 ( b − a ) [ f ( a ) + f ( b ) ] − ∫ a b f ( t ) d t = 2 1 ∫ a b [ f ( a ) + f ( b ) − 2 f ( t ) ] d t = 2 1 ∫ a b { ∫ t b f ′ ( u ) d u − ∫ a t f ′ ( u ) d u } d t = 2 1 ∫ a b [ ( u − a ) − ( b − u ) ] f ′ ( u ) d u = ∫ a b [ u − 2 1 ( a + b ) ] f ′ ( u ) d u = ∫ a b [ u − 2 1 ( a + b ) ] [ f ′ ( u ) − f ′ ( a ) ] d u and hence ∣ ∣ ∣ ∣ ∣ 2 1 ( b − a ) [ f ( a ) + f ( b ) ] − ∫ a b f ( t ) d t ∣ ∣ ∣ ∣ ∣ ≤ 4 1 K b − a ( b − a ) 2 where K δ = s u p { ∣ f ′ ( u ) − f ′ ( v ) ∣ : 0 ≤ u , v ≤ 1 , ∣ u − v ∣ ≤ δ } . Thus we deduce that ∣ ∣ ∣ ∣ ∣ 2 n 1 [ f ( n k ) + f ( n k + 1 ) ] − ∫ n k n k + 1 f ( t ) d t ∣ ∣ ∣ ∣ ∣ ≤ 4 n 2 K n − 1 for any positive integer n and 0 ≤ k ≤ n − 1 . Adding these inequalities up, we see that ∣ ∣ ∣ ∣ ∣ n − 1 ( 2 1 f ( 0 ) + k = 1 ∑ n − 1 f ( n k ) + 2 1 f ( 1 ) ) − ∫ 0 1 f ( t ) d t ∣ ∣ ∣ ∣ ∣ ≤ 4 n K n − 1 and hence ∣ ∣ ∣ ∣ ∣ k = 1 ∑ n f ( n k ) − n ∫ 0 1 f ( t ) d t − 2 1 [ f ( 1 ) − f ( 0 ) ] ∣ ∣ ∣ ∣ ∣ ≤ 4 1 K n − 1 Since f is continuously differentiable, K δ → 0 as δ → 0 , and hence n → ∞ lim { k = 1 ∑ n f ( n k ) − n ∫ 0 1 f ( t ) d t } = 2 1 [ f ( 1 ) − f ( 0 ) ] In this case, we need f ( t ) = tan − 1 t , and hence A B = 2 1 [ f ( 1 ) − f ( 0 ) ] = 8 1 π = ∫ 0 1 f ( t ) d t = [ t tan − 1 t − 2 1 ln ( t 2 + 1 ) ] 0 1 = 4 1 π − 2 1 ln 2 so that 4 A − 2 B = ln 2 , making the answer 2 .