Seems Complicated, but is not really 1 !

Calculus Level pending

N = 2 2 n + 1 π ( n + 1 ) ! 0 t n + 1 2 e t d t N = \frac {2^{2n+1}}{\sqrt {\pi} (n+1)!} \int_{0}^{\infty} t^{n + \frac {1}{2}} e^{-t} dt

Simplify N N .

Notation: ( n k ) = n ! k ! ( n k ) ! \dbinom nk = \dfrac {n!}{k!(n-k)!} denotes the binomial coefficient .

Topic: Calculus and Combinatorics

( 2 n + 2 n ) \displaystyle \binom {2n+2}{n} ( 2 n + 1 ) ! n ! \displaystyle \frac {(2n+1)!}{n!} ( 2 n + 1 n 1 ) \displaystyle \binom {2n+1}{n-1} ( 2 n + 1 n ) \displaystyle \binom {2n+1}{n}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 13, 2020

N = 2 2 n + 1 π ( n + 1 ) ! 0 t n + 1 2 e t d t = 2 2 n + 1 π ( n + 1 ) ! Γ ( n + 3 2 ) where Γ ( ) denotes the gamma function. = 2 2 n + 1 π ( n + 1 ) ! ( 2 n + 1 2 × × 5 2 × 3 2 × 1 2 Γ ( 1 2 ) ) Since Γ ( 1 + s ) = s Γ ( s ) = 2 2 n + 1 ( 2 n + 1 ) ! ! π π ( n + 1 ) ! 2 n + 1 and Γ ( 1 2 ) = π = 2 2 n + 1 ( 2 n + 1 ) ! ( n + 1 ) ! 2 n + 1 2 n n ! As ( 2 n + 1 ) = ( 2 n + 1 ) ! 2 n n ! = ( 2 n + 1 ) ! n ! ( n + 1 ) ! = ( 2 n + 1 n ) \begin{aligned} N & = \frac {2^{2n+1}}{\sqrt \pi (n+1)!} \int_0^\infty t^{n+\frac 12}e^{-t} dt \\ & = \frac {2^{2n+1}}{\sqrt \pi (n+1)!} \Gamma \left(n + \frac 32\right) & \small \blue{\text{where }\Gamma (\cdot) \text{ denotes the gamma function.}} \\ & = \frac {2^{2n+1}}{\sqrt \pi (n+1)!} \left(\frac {2n+1}2 \times \cdots \times \frac 52 \times \frac 32 \times \frac 12 \Gamma \left(\frac 12\right) \right) & \small \blue{\text{Since }\Gamma(1+s) = s\Gamma(s)} \\ & = \frac {2^{2n+1}(2n+1)!!\sqrt \pi}{\sqrt \pi (n+1)! 2^{n+1}} & \small \blue{\text{and }\Gamma \left(\frac 12 \right) = \sqrt \pi} \\ & = \frac {2^{2n+1}(2n+1)!}{(n+1)! 2^{n+1} 2^nn!} & \small \blue{\text{As }(2n+1) = \frac {(2n+1)!}{2^n n!}} \\ & = \frac {(2n+1)!}{n!(n+1)!} \\ & = \boxed{\binom {2n+1}n} \end{aligned}


Reference: Gamma function

Excellent.

Nikola Alfredi - 1 year, 3 months ago

The value of the integral is Γ ( n + 3 2 ) \Gamma \left(n+\dfrac{3}{2}\right) . The remaining is algebraic calculations.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...