Polynomial 2

Algebra Level 3

Find the remainder when x 100 x^{100} is divided by x 2 3 x + 2 x^2-3x+2 .

( 2 2 100 ) ( 2-{ 2 }^{ 100 } ) ( 2 100 1 ) x ( { 2 }^{ 100 }-1 ) x ( 2 100 1 ) x + ( 2 2 100 ) (2^{100} - 1) x + (2-2^{100} ) x + ( 2 2 100 ) x+( 2-{ 2 }^{ 100 } )

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Soumya Shrivastva
May 15, 2016

x 100 = ( x 2 3 x + 2 ) ( Q u o t i e n t ) + r e m a i n d e r = ( x 2 3 x + 2 ) ( Q u o t i e n t ) + a x + b , w h e r e a x + b i s t h e m a x i m u m p o s s i b l e v a l u e o f t h e r e m a i n d e r . x 100 = ( Q u o . ) ( x 1 ) ( x 2 ) + a x + b F o r x = 1 1 = a + b . . . . . . . . . . . . . . . . . . . ( 1 ) F o r x = 2 2 100 = 2 a + b . . . . . . . . . . . . . . . . . . . . . . ( 2 ) S o l v i n g ( 1 ) & ( 2 ) , a = 2 100 1 & b = 2 2 100 R e m a i n d e r = a x + b = ( 2 100 1 ) x + ( 2 2 100 ) \Rightarrow { x }^{ 100 }=\left( { x }^{ 2 }-3x+2 \right) \left( Quotient \right) +remainder\\ \quad \quad \quad \quad \quad =\left( { x }^{ 2 }-3x+2 \right) \left( Quotient \right) +ax+b\quad ,\quad where\quad ax+b\quad is\quad the\quad maximum\\ possible\quad value\quad of\quad the\quad remainder.\\ \Rightarrow { x }^{ 100 }=\left( Quo. \right) \left( x-1 \right) \left( x-2 \right) +ax+b\\ \\ For\quad x=1\\ \Rightarrow 1=a+b...................(1)\\ \\ For\quad x=2\\ \Rightarrow { 2 }^{ 100 }=2a+b......................(2)\\ Solving\quad (1)\quad \& \quad (2),\\ a={ 2 }^{ 100 }-1\quad \& \quad b={ 2-2 }^{ 100 }\quad \\ Remainder=ax+b=\left( { 2 }^{ 100 }-1 \right) x+\left( 2-{ 2 }^{ 100 } \right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...