Seems easy huh?

Algebra Level 4

If 1 a + 1 b + 1 c = a + b + c , \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c} = a+b+c , then 1 ( 2 a + b + c ) 2 + 1 ( 2 b + a + c ) 2 + 1 ( 2 c + a + b ) 2 x y , \dfrac{1}{(2a+b+c)^2}+\dfrac{1}{(2b+a+c)^2}+\dfrac{1}{(2c+a+b)^2} \leq \dfrac{x}{y},

where x , y x,y are coprime integers. Find the value of x + y . x+y.


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Bufang Liang
Aug 26, 2015

This problem can be approached in numerous ways once RMS \ge AM \ge GM \ge HM is understood. (RMS = root-mean square, AM = arithmetic mean, GM = geometric mean, HM = harmonic mean)

In other words: x 1 2 + + x n 2 n x 1 + + x n n x 1 x n n n 1 x 1 + + 1 x n \sqrt{\frac{x_1^2+\cdots+x_n^2}{n}} \ge\frac{x_1+\cdots+x_n}{n}\ge\sqrt[n]{x_1\cdots x_n}\ge\frac{n}{\frac{1}{x_1}+\cdots+\frac{1}{x_n}}

From here, we can see that: 3 1 a + 1 b + 1 c a + b + c 3 \frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \le \frac{a+b+c}{3}

It becomes very clear now that both a + b + c a+b+c and 1 a + 1 b + 1 c \frac{1}{a} + \frac{1}{b} + \frac{1}{c} must be 3. In addition, this is only satisfied when a a , b b , c c , are all equal, which confirms that they are each equal to 1. The rest of the problem is trivial.

To check, we apply the same relations to the following: a 2 + b 2 + c 2 3 a + b + c 3 a 2 + b 2 + c 2 3 1 a 2 + b 2 + c 2 3 \sqrt{\frac{a^2+b^2+c^2}{3}} \ge \frac{a+b+c}{3} \\ \sqrt{\frac{a^2+b^2+c^2}{3}} \ge 1 \\ a^2+b^2+c^2 \ge 3

This tells us that ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + a c ) = 9 a 2 + b 2 + c 2 = 9 2 ( a b + b c + a c ) 3 a b + b c + a c 3 (a+b+c)^2 = a^2 + b^2 +c^2 + 2(ab+bc+ac) = 9 \\ a^2 + b^2 + c^2 = 9-2(ab+bc+ac) \ge 3 \\ ab+bc+ac \ge 3

Both of which hold true if all the variables are 1.

From here, we could expand out the formula and find more relations and simplify, but it is far easier to just plug in the value of 1 for each of the variables, confirming the answer is 3 16 \boxed{\frac{3}{16}} , and no inequality relation is even necessary.

Note: I personally think the problem should be worded a bit more technically, specifying that x y \frac{x}{y} should be the minimum value possible.

Thanks added.

Rama Devi - 5 years, 9 months ago
Rama Devi
Aug 26, 2015

For positive real numbers x , y , z , x, y, z, from the arithmetic-geometric-mean inequality,

2 x + y + z = ( x + y ) + ( x + z ) 2 ( x + y ) ( y + z ) , 2x+y+z=(x+y)+(x+z)\geq2\sqrt{(x+y)(y+z)}, we obtain 1 ( 2 x + y + z ) 2 1 4 ( x + y ) ( x + z ) . \dfrac{1}{(2x+y+z)^2}\leq\dfrac{1}{4(x+y)(x+z)}.

Applying this to the left-hand side terms of the inequality to find, we get

1 ( 2 a + b + c ) 2 + 1 ( 2 b + a + c ) 2 + 1 ( 2 c + a + b ) 2 \dfrac{1}{(2a+b+c)^2}+\dfrac{1}{(2b+a+c)^2}+\dfrac{1}{(2c+a+b)^2}\leq 1 4 ( a + b ) ( a + c ) + 1 4 ( b + c ) ( b + a ) + 1 4 ( c + a ) ( c + b ) = \dfrac{1}{4(a+b)(a+c)}+\dfrac{1}{4(b+c)(b+a)}+\dfrac{1}{4(c+a)(c+b)}=

( b + c ) + ( c + a ) + ( a + b ) 4 ( a + b ) ( b + c ) ( a + c ) = a + b + c 2 ( a + b ) ( b + c ) ( a + c ) . . . . . . . . . . . . . 1 \dfrac{(b+c)+(c+a)+(a+b)}{4(a+b)(b+c)(a+c)}=\dfrac{a+b+c}{2(a+b)(b+c)(a+c)}.............\boxed{1}

A second application of the inequality of the arithmetic-geometric mean yields,

a 2 b + a b 2 + b 2 c + b c 2 + a 2 c + a c 2 6 a b c a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\geq6abc or, equivalently,

9 ( a + b ) ( b + c ) ( c + a ) 8 ( a + b + c ) ( a b + b c + a c ) . . . . . . . . . . . . . . . . . 2 9(a+b)(b+c)(c+a)\geq8(a+b+c)(ab+bc+ac).................\boxed{2}

The supposition 1 a + 1 b + 1 c = a + b + c , \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c, can be written as

a b + b c + a c = a b c ( a + b + c ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 ab+bc+ac=abc(a+b+c)........................................\boxed{3}

Applying the arithmetic-geometric-mean inequality

x 2 y 2 + x 2 z 2 2 x 2 y z x^2y^2+x^2z^2\geq2x^2yz thrice, we get

a 2 b 2 + b 2 c 2 + c 2 a 2 a 2 b c + a b 2 c + a b c 2 , a^2b^2+b^2c^2+c^2a^2\geq a^2bc+ab^2c+abc^2, which is equivalent to,

( a b + b c + c a ) 2 3 a b c ( a + b + c ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 (ab+bc+ca)^2\geq 3abc(a+b+c)...............................\boxed{4}

Combining (1), (2), (3), and (4) \text{(1), (2), (3), and (4)} , we will finish the solution:

a + b + c 2 ( a + b ) ( b + c ) ( a + c ) = ( a + b + c ) ( a b + b c + a c ) 2 ( a + b ) ( b + c ) ( a + c ) a b + b c + a c a b c ( a + b + c ) a b c ( a + b + c ) ( a b + b c + a c ) 2 \dfrac{a+b+c}{2(a+b)(b+c)(a+c)}=\dfrac{(a+b+c)(ab+bc+ac)}{2(a+b)(b+c)(a+c)}*\dfrac{ab+bc+ac}{abc(a+b+c)}*\dfrac{{abc(a+b+c)}}{(ab+bc+ac)^2}

9 2 8 1 1 3 3 16 . \leq \dfrac{9}{2*8}*1*\dfrac{1}{3}\leq \dfrac{3}{16}.

Hence x = 3 , y = 16 x + y = 3 + 16 = 19 . x = 3, y = 16 \Rightarrow x+y = 3+16=\boxed{19}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...