Interesting Series

Calculus Level 5

1 + 1 4 ( 1 2 + 1 3 ) + 1 4 2 ( 1 4 + 1 5 ) + 1 4 3 ( 1 6 + 1 7 ) + 1+\dfrac{1}{4} \left(\dfrac{1}{2}+\dfrac{1}{3}\right) + \frac{1}{4^2} \left(\dfrac{1}{4}+\dfrac{1}{5}\right) + \dfrac{1}{4^3} \left(\dfrac{1}{6}+\dfrac{1}{7}\right)+\cdots

If the value of the series above is equal to ln A \ln \sqrt A , find A A .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the sum be S S .

S = 1 + 1 4 ( 1 2 + 1 3 ) + 1 4 2 ( 1 4 + 1 5 ) + 1 4 3 ( 1 6 + 1 7 ) + . . . = 2 ( 1 2 + 1 3 ˙ ( 1 2 ) 3 + 1 5 ˙ ( 1 2 ) 5 + . . . ) + ( 1 2 ˙ ( 1 2 ) 2 + 1 4 ˙ ( 1 2 ) 4 + 1 6 ˙ ( 1 2 ) 6 + . . . ) = ln ( 1 + 1 2 ) ln ( 1 1 2 ) 1 2 ( ln ( 1 + 1 2 ) + ln ( 1 1 2 ) ) See Note. = 1 2 ln ( 3 2 ) 3 2 ln ( 1 2 ) = ln ( 3 2 × 2 2 ) = ln 12 \begin{aligned} S & = 1 + \frac{1}{4}\left(\frac{1}{2} + \frac{1}{3} \right) + \frac{1}{4^2}\left(\frac{1}{4} + \frac{1}{5} \right) + \frac{1}{4^3}\left(\frac{1}{6} + \frac{1}{7} \right) + ... \\ & = 2 \left(\frac{1}{2} + \frac{1}{3}\dot{}\left(\frac{1}{2}\right)^3 + \frac{1}{5}\dot{}\left(\frac{1}{2}\right)^5 +... \right) + \left(\frac{1}{2}\dot{}\left(\frac{1}{2}\right)^2 + \frac{1}{4}\dot{}\left(\frac{1}{2}\right)^4 + \frac{1}{6}\dot{}\left(\frac{1}{2}\right)^6 +... \right) \\ & = \ln \left(1+\frac{1}{2}\right) - \ln \left(1-\frac{1}{2}\right) - \frac{1}{2} \left(\ln \left(1+\frac{1}{2}\right) + \ln \left(1-\frac{1}{2}\right) \right) \quad \quad \small \color{#3D99F6}{\text{See Note.}} \\ & = \frac{1}{2} \ln \left(\frac{3}{2}\right) - \frac{3}{2} \ln \left(\frac{1}{2}\right) = \ln \left(\sqrt{\frac{3}{2}} \times 2 \sqrt{2} \right) = \ln \sqrt{12} \end{aligned}

A = 12 \Rightarrow A = \boxed{12}

Note: \color{#3D99F6}{\text{Note:}}

We know that for 0 x < 1 0 \le x < 1 , { ln ( 1 + x ) = x 1 2 x 2 + 1 3 x 3 1 4 x 4 + . . . ln ( 1 x ) = x 1 2 x 2 1 3 x 3 1 4 x 4 . . . \begin{cases} \ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + ... \\ \ln(1-x) = - x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 - ... \end{cases}

{ ln ( 1 + x ) ln ( 1 x ) = 2 ( x + 1 3 x 3 + 1 5 x 3 1 7 x 7 + . . . ) ln ( 1 + x ) ln ( 1 x ) = 2 ( 1 2 x 2 + 1 4 x 4 1 6 x 6 1 8 x 8 . . . ) \begin{aligned} \Rightarrow \begin{cases} \ln(1+x) - \ln(1-x) & = 2 \left( x + \frac{1}{3}x^3 + \frac{1}{5}x^3 - \frac{1}{7}x^7 + ... \right) \\ - \ln(1+x) - \ln(1-x) & = 2 \left( \frac{1}{2}x^2 + \frac{1}{4}x^4 - \frac{1}{6}x^6 - \frac{1}{8}x^8 - ... \right) \end{cases} \end{aligned}

very good...............wosks

jhonniel calamba - 5 years, 5 months ago
Antonio Hugo
Jan 12, 2016

Moderator note:

Once you recognize the series, it is often easier to quote the Maclaurin series expansion, instead of trying to derive it all.

Amazing solution

Dhruv Aggarwal - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...